以葡萄糖为碳源、NaNO3为模板和造孔剂,通过高温炭化法以及NH3高温后处理合成了多级孔氮掺杂碳材料NC-X-T[X为NaNO3与葡萄糖的质量比,T为温度(℃)]。采用N2吸附-脱附、XRD、XPS、SEM、TEM对NC-X-T的比表面积、孔径分布、晶体结构、化学...以葡萄糖为碳源、NaNO3为模板和造孔剂,通过高温炭化法以及NH3高温后处理合成了多级孔氮掺杂碳材料NC-X-T[X为NaNO3与葡萄糖的质量比,T为温度(℃)]。采用N2吸附-脱附、XRD、XPS、SEM、TEM对NC-X-T的比表面积、孔径分布、晶体结构、化学组成以及形貌进行了表征与测试。以NC-X-T为催化剂、过硫酸氢钾(PMS)为氧化剂,在不同条件下进行了苯酚的降解。结果表明,造孔和掺氮过程的协同可极大提升NC-X-T的催化性能。0.005 g NC-0.5-800及质量浓度1.0 g/L PMS在40 min内可将100 mL 5.3×10^(–4)mol/L苯酚完全降解,反应速率常数高达0.397 min^(–1),优于大多数金属及非金属催化剂。利用XPS对降解过程中NC-X-T的稳定性进行了研究,证实碳材料的氧化是其失活的主要原因,经过高温无氧处理可以恢复其部分催化活性。展开更多
Herein we present a facile approach for the preparation of a novel hierarchically porous carbon,in which seaweeds serve as carbon source and KOH as activator.The fabricated KOH-activated seaweed carbon(KSC)displays st...Herein we present a facile approach for the preparation of a novel hierarchically porous carbon,in which seaweeds serve as carbon source and KOH as activator.The fabricated KOH-activated seaweed carbon(KSC)displays strong affinity towards tetracycline with maximum uptake quantity of 853.3 mg/g,significantly higher than other tetracycline adsorbents.The superior adsorption capacity ascribes to large specific surface area(2614 m^(2)/g)and hierarchically porous structure of K-SC,along with strongπ-πinteractions between tetracycline and KSC.In addition,the as-prepared K-SC exhibits fast adsorption kinetics,capable of removing99%of tetracycline in 30 min.Meanwhile,the exhausted K-SC can be regenerated for four cycling adsorption without an obvious degradation in capacities.More importantly,p H and ionic strengths barely affect the adsorption performance of K-SC,implying electrostatic interactions hardly play any role in tetracycline adsorption process.Furthermore,the K-SC packed fixed-bed column(0.1 g of adsorbents)can continually treat 2780 m L solution spiked with 5.0 mg/g tetracycline before reaching the breakthrough point.All in all,the fabricated K-SC equips with high adsorption capacity,fast adsorption rate,glorious anti-interference capability and good reusability,which make it hold great feasibilities for treating tetracycline contamination in real applications.展开更多
A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer...A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer, respectively. The blends were carbonized at 800℃ in nitrogen. SEM, BET measurement and BJH method reveal that the obtained carbon possesses a mesoporous characteristic, with the average pore size between 3.0 nm and 5.0 nm. The electrochemical properties of supercapacitor using these carbons as electrode material were investigated by cyclic voltammetry and constant current charge-discharge. The results indicate that the composition of blended polymers has a strong effect on the specific capacitance. When the mass ratio of PF to gelatin is kept at 1:1, the largest surface area of 222 m2/g is obtained, and the specific capacitance reaches 161 F/g.展开更多
A carbon nanotube (CNT) sponge contains a three-dimensional conductive nano- tube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique ...A carbon nanotube (CNT) sponge contains a three-dimensional conductive nano- tube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique CNT@polypyrrole (PPy) core-shell sponge, and demonstrate its application as a highly compressible supercapacitor electrode with high performance. A PPy layer with optimal thickness was coated uniformly on individual CNTs and inter-CNT contact points by electrochemical deposition and crosslinking of pyrrole monomers, resulting in a core-shell configuration. The PPy coating significantly improves specific capacitance of the CNT sponge to above 300 F/g, and simultaneously reinforces the porous structure to achieve better strength and fully elastic structural recovery after compression. The CNT@PPy sponge can sustain 1,000 compression cycles at a strain of 50% while maintaining a stable capacitance (〉 90% of initial value). Our CNT@PPy core-shell sponges with a highly porous network structure may serve as compressible, robust electrodes for supercapacitors and many other energy devices.展开更多
Porous carbon nanospheres have been widely used in different fields such as electric devices, catalysts, and water treatment. Here we will introduce a template-free process for the preparation of porous carbon nanosph...Porous carbon nanospheres have been widely used in different fields such as electric devices, catalysts, and water treatment. Here we will introduce a template-free process for the preparation of porous carbon nanospheres starting from a direct 3-aminophenol formaldehyde polymerization in a mixed solution. We identify that the addition of different alcohols, particularly ethanol and nbutanol, is able to change the growth habit of the polymer nanospheres and introduce a favorable inner compositional homogeneity for the preparation of porous structure. After the carbonization of the polymer nanospheres, the obtained porous carbon exhibits promising electrochemical performance when used as electrode material in super capacitor.展开更多
文摘以葡萄糖为碳源、NaNO3为模板和造孔剂,通过高温炭化法以及NH3高温后处理合成了多级孔氮掺杂碳材料NC-X-T[X为NaNO3与葡萄糖的质量比,T为温度(℃)]。采用N2吸附-脱附、XRD、XPS、SEM、TEM对NC-X-T的比表面积、孔径分布、晶体结构、化学组成以及形貌进行了表征与测试。以NC-X-T为催化剂、过硫酸氢钾(PMS)为氧化剂,在不同条件下进行了苯酚的降解。结果表明,造孔和掺氮过程的协同可极大提升NC-X-T的催化性能。0.005 g NC-0.5-800及质量浓度1.0 g/L PMS在40 min内可将100 mL 5.3×10^(–4)mol/L苯酚完全降解,反应速率常数高达0.397 min^(–1),优于大多数金属及非金属催化剂。利用XPS对降解过程中NC-X-T的稳定性进行了研究,证实碳材料的氧化是其失活的主要原因,经过高温无氧处理可以恢复其部分催化活性。
基金supported by the National Key R&D Program of China(2017YFA0207202)the National Natural Science Foundation of China(No.41701259,No.51572263,and No.51772299)。
文摘Herein we present a facile approach for the preparation of a novel hierarchically porous carbon,in which seaweeds serve as carbon source and KOH as activator.The fabricated KOH-activated seaweed carbon(KSC)displays strong affinity towards tetracycline with maximum uptake quantity of 853.3 mg/g,significantly higher than other tetracycline adsorbents.The superior adsorption capacity ascribes to large specific surface area(2614 m^(2)/g)and hierarchically porous structure of K-SC,along with strongπ-πinteractions between tetracycline and KSC.In addition,the as-prepared K-SC exhibits fast adsorption kinetics,capable of removing99%of tetracycline in 30 min.Meanwhile,the exhausted K-SC can be regenerated for four cycling adsorption without an obvious degradation in capacities.More importantly,p H and ionic strengths barely affect the adsorption performance of K-SC,implying electrostatic interactions hardly play any role in tetracycline adsorption process.Furthermore,the K-SC packed fixed-bed column(0.1 g of adsorbents)can continually treat 2780 m L solution spiked with 5.0 mg/g tetracycline before reaching the breakthrough point.All in all,the fabricated K-SC equips with high adsorption capacity,fast adsorption rate,glorious anti-interference capability and good reusability,which make it hold great feasibilities for treating tetracycline contamination in real applications.
基金Projects(50772033,50972043) supported by the National Natural Science Foundation of ChinaProject(09JJ3095) supported by the Natural Science Foundation of Hunan Province,China+2 种基金Project(09A001) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010FJ3151) supported by the Science and Research Plan of Hunan Province,ChinaProject supported by the Science and Technology Innovative Research Team in Higher Education Institution of Hunan Province,China
文摘A high-performance porous carbon material for supercapacitor electrodes was prepared by using a polymer blend method. Phenol-formaldehyde resin and gelatin were used as carbon precursor polymer and pore former polymer, respectively. The blends were carbonized at 800℃ in nitrogen. SEM, BET measurement and BJH method reveal that the obtained carbon possesses a mesoporous characteristic, with the average pore size between 3.0 nm and 5.0 nm. The electrochemical properties of supercapacitor using these carbons as electrode material were investigated by cyclic voltammetry and constant current charge-discharge. The results indicate that the composition of blended polymers has a strong effect on the specific capacitance. When the mass ratio of PF to gelatin is kept at 1:1, the largest surface area of 222 m2/g is obtained, and the specific capacitance reaches 161 F/g.
基金This work was supported by the National Natural Science Foundation of China (NSFC, No. 91127004) and the Beijing City Science and Technology Program (No. Z121100001312005).
文摘A carbon nanotube (CNT) sponge contains a three-dimensional conductive nano- tube network, and can be used as a porous electrode for various energy devices. We present here a rational strategy to fabricate a unique CNT@polypyrrole (PPy) core-shell sponge, and demonstrate its application as a highly compressible supercapacitor electrode with high performance. A PPy layer with optimal thickness was coated uniformly on individual CNTs and inter-CNT contact points by electrochemical deposition and crosslinking of pyrrole monomers, resulting in a core-shell configuration. The PPy coating significantly improves specific capacitance of the CNT sponge to above 300 F/g, and simultaneously reinforces the porous structure to achieve better strength and fully elastic structural recovery after compression. The CNT@PPy sponge can sustain 1,000 compression cycles at a strain of 50% while maintaining a stable capacitance (〉 90% of initial value). Our CNT@PPy core-shell sponges with a highly porous network structure may serve as compressible, robust electrodes for supercapacitors and many other energy devices.
基金supported by the National Natural Science Foundation of China(51672282,21373238)the Major State Basic Research Program of China(2013CB934000)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010101)
文摘Porous carbon nanospheres have been widely used in different fields such as electric devices, catalysts, and water treatment. Here we will introduce a template-free process for the preparation of porous carbon nanospheres starting from a direct 3-aminophenol formaldehyde polymerization in a mixed solution. We identify that the addition of different alcohols, particularly ethanol and nbutanol, is able to change the growth habit of the polymer nanospheres and introduce a favorable inner compositional homogeneity for the preparation of porous structure. After the carbonization of the polymer nanospheres, the obtained porous carbon exhibits promising electrochemical performance when used as electrode material in super capacitor.