期刊文献+
共找到388篇文章
< 1 2 20 >
每页显示 20 50 100
融合多小波分解的深度卷积神经网络轴承故障诊断方法 被引量:1
1
作者 陶唐飞 周文洁 +1 位作者 况佳臣 徐光华 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第5期31-41,共11页
针对卷积神经网络及其与信号降噪预处理集成方法面临高噪声环境和低质量数据挑战时难以有效地提取信号有用特征的问题,提出了一种融合Geronimo-Hardin-Massopust多小波分解的深度卷积神经网络模型(GHMMD-DCNN)。该模型思想是将多小波包... 针对卷积神经网络及其与信号降噪预处理集成方法面临高噪声环境和低质量数据挑战时难以有效地提取信号有用特征的问题,提出了一种融合Geronimo-Hardin-Massopust多小波分解的深度卷积神经网络模型(GHMMD-DCNN)。该模型思想是将多小波包分解与卷积神经网络深度融合,即设计多个一级多小波分解层以提取信号的低频分量和高频分量,再将多个一级多小波分解层与卷积层交替联接,使模型能够多尺度地提取并学习信号有用的时频域信息,信号分解和特征学习交替执行,进而实现强噪声鲁棒特征提取。在不同工况下的航空高速轴承振动数据上进行测试,结果表明:所提模型训练时能够快速达到稳定收敛,并且识别准确率均能达到99.9%以上;提出的方法在强噪声干扰下的故障辨识准确度和识别稳定性均优于对比方法,验证了其优秀的抗噪声干扰能力;在少训练样本测试中,提出的方法在单类训练样本数量为60时的平均诊断准确率高达91.19%,相比于其他方法最低提升了13.19%,验证了GHMMD-DCNN模型具有更优的低样本泛化能力。 展开更多
关键词 小波分解 卷积神经网络 深度学习 轴承故障诊断
下载PDF
基于连续小波卷积神经网络的轴承智能故障诊断方法
2
作者 耿志强 陈威 +1 位作者 马波 韩永明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第10期2069-2075,共7页
传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的... 传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法.构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的计算空间,提高CNN的整体自适应性.在凯斯西储大学轴承数据集上开展滚动轴承故障诊断方法对比实验.结果表明,与传统基于CNN、快速傅里叶变换-CNN、长短时记忆CNN故障诊断方法相比,所提方法的故障诊断精度分别提高了7.45、4.46和1.53个百分点,CNN的收敛速度更快.在不同工况的泛化任务中,所提方法的平均准确率为99.64%,准确性和泛化能力良好. 展开更多
关键词 卷积神经网络(CNN) 连续小波 自适应激活函数 轴承 故障诊断
下载PDF
基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法
3
作者 殷军 殷学功 +4 位作者 闫立东 崔岩 张尧 王小朋 李宇航 《电气自动化》 2024年第4期90-92,95,共4页
针对传统小波变换法去除干式空心电抗器红外图像中夹带的噪声效果不理想的问题,提出了基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法。首先利用卷积神经网络中的残差学习对图像中混合特征信息进行提取;然后通过改进... 针对传统小波变换法去除干式空心电抗器红外图像中夹带的噪声效果不理想的问题,提出了基于改进小波变换与卷积神经网络的干式空心电抗器红外图像去噪方法。首先利用卷积神经网络中的残差学习对图像中混合特征信息进行提取;然后通过改进小波变换对图像进行小波分解,并将分解后的分量输入至网络中进行训练;进而通过残差学习增强图像纹理细节信息,解决了传统图像去噪方法的不足;最后进行仿真比较。结果表明,所提方法可以降低网络计算难度,加快训练速度,同时具有良好的去噪性能,优于传统图像去噪方法。 展开更多
关键词 干式空心电抗器 红外图像去噪 改进小波变换 阈值函数 卷积神经网络
下载PDF
基于全卷积神经网络的纵横波分解技术研究及其在弹性波成像中的应用
4
作者 许凯 陈祖庆 +3 位作者 孙振涛 张广智 康家光 王静波 《石油物探》 CSCD 北大核心 2024年第6期1126-1137,共12页
纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场... 纵波(P)和横波(S)波场分解对弹性介质中的多分量地震波成像至关重要,但是常规P-S波波场分解方法精度相对较低,且存在成像假象的问题。为此,构建了一种基于全卷积神经网络(FCN)的网络结构,用于二维各向同性弹性介质地震波场的P-S波波场分解。该网络由全卷积神经网络构建,使用合成波场快照进行训练,训练完成的网络类似空间滤波器,可实现高精度的P-S波波场分解。不同于基于傅里叶变换的P-S波波场分解方法,该方法可以在波场任意空间位置处开展P-S波波场分解,因此适用于面向目标的地震成像。合成数据的计算示例表明,基于全卷积神经网络的纵横波波场分解方法可有效分解P波和S波波场,且精度高于其他空间域分解方法。弹性波逆时偏移成像结果表明,使用基于全卷积神经网络(FCN)的P-S波波场分解方法所获得的基于P波和S波的地震波成像结果,可有效减少速度界面处的成像假象,提高复杂地质条件下的多波成像精度。 展开更多
关键词 弹性 P-S场分解 卷积神经网络(FCN) 弹性成像
下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号
5
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏 动脉血压 卷积神经网络 长短期记忆神经网络 混合神经网络
下载PDF
基于小波集成一维卷积神经网络的抗噪声聚变电源故障诊断方法研究
6
作者 杭芹 钟凌鹏 +1 位作者 李华 张恒 《核技术》 EI CAS CSCD 北大核心 2024年第5期136-144,共9页
数据驱动的电源故障诊断方法高度依赖于电源传感器的信号数据质量,托卡马克聚变装置中的电源系统往往在复杂电磁场耦合的环境下运行,导致其采集到的具有物理特征的信号常与大量无法解耦的噪声混合。为了抑制噪声对最终诊断结果的影响,... 数据驱动的电源故障诊断方法高度依赖于电源传感器的信号数据质量,托卡马克聚变装置中的电源系统往往在复杂电磁场耦合的环境下运行,导致其采集到的具有物理特征的信号常与大量无法解耦的噪声混合。为了抑制噪声对最终诊断结果的影响,提出了一种利用抗噪声小波增强一维卷积神经网络的多分支降噪网络(Hierarchy Branch Denoising Convolutional Neural Network,HBD-CNN),以完成噪声干扰下的电源系统故障诊断任务。具体而言,本研究将离散小波变换(Discrete Wavelet Transform,DWT)的信号分解功能植入CNN的网络层中,结合对噪声更加鲁棒的指数线性激活单元(Exponentially Linear Unit,ELU),对传统1D-CNN网络结构进行深度优化。此外,根据先验知识构建起的数据多层级结构,搭配网络中分层级的分类模块,提高了HBDCNN的泛化能力。最后,基于仿真电源数据集开展了对本模型架构的初步验证,当信噪比为10 dB时,对电源变换器的故障诊断准确率可达98.31%;当信噪比为2 dB时,准确率仍能保持92%以上。实验结果表明,HBDCNN在噪声工况下具有良好的故障诊断性能。 展开更多
关键词 离散小波变换 电源变换器 卷积神经网络 故障诊断
下载PDF
基于改进卷积神经网络和射频指纹的无人机检测与识别 被引量:1
7
作者 周景贤 李希娜 《计算机应用》 CSCD 北大核心 2024年第3期876-882,共7页
针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经... 针对无人机(UAV)在图像识别时易受环境干扰,而传统信号识别难以准确提取特征且实时性较差的问题,提出一种基于改进卷积神经网络(CNN)和射频(RF)指纹的无人机检测识别方法。首先,使用通用软件无线电外设(USRP)捕获环境中的无线电信号,经过多分辨率分析获取偏差值,检测是否为无人机射频信号;其次,将检测到的无人机射频信号经过小波变换和主成分分析(PCA)处理,获得射频信号频谱,作为神经网络的输入;最后,构建轻量级残差神经网络(LRCNN),输入射频频谱进行网络训练,进行无人机的分类识别。实验结果表明,所提方法可以有效检测并识别无人机信号,平均识别精度可达84%;在信噪比(SNR)大于20 dB时,LRCNN的识别精度达到了88%,相较于支持向量机(SVM)、原始OracleCNN分别提高31和7个百分点,在识别精度和鲁棒性方面比这两种方法均有所提升。 展开更多
关键词 无人机安全 射频指纹 小波变换 注意力残差网络 卷积神经网络
下载PDF
基于离散剪切波与优化深度卷积神经网络的图像降噪方法
8
作者 白华军 李荣昌 +2 位作者 司洁戈 张义 张景熙 《电声技术》 2024年第1期146-152,共7页
海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法... 海洋试验图像通常受到海洋气象条件、海水光照折射和海洋深度等因素的影响,导致在海洋中采集的图像包含严重的噪声。为了提高海洋试验图像的清晰度和降噪性,提出一种基于离散剪切波与优化深度卷积神经网络相结合的海洋试验图像降噪方法。采用离散剪切波变换分解海洋试验图像,能有效从图像中提取不同方向和频率的特征。利用优化深度卷积神经网络强大的图像特征提取能力,经网络模型训练后,能获取图像中的关键特征,达到降噪的目的。在验证实验中,所提方法与传统图像降噪方法相比,能有效保留图像的纹理和细节特性,获得了较好的降噪效果,有助于提高海洋试验图像的清晰度和降噪性。 展开更多
关键词 离散剪切变换 降噪方法 深度卷积神经网络 海洋试验
下载PDF
基于小波时频图和多尺度卷积神经网络的发动机工况识别研究
9
作者 张妍 房丽媛 +1 位作者 雷千龙 王毅鹏 《长江信息通信》 2024年第2期62-65,71,共5页
针对传统工况识别方法对非平稳的汽车发动机音频信号难以准确识别的问题,提出一种基于小波时频图和多尺度卷积神经网络的发动机工况识别方法。首先,将原始信号通过连续小波转化为小波时频图,其次,对小波时频图进行统一的预处理,最后将... 针对传统工况识别方法对非平稳的汽车发动机音频信号难以准确识别的问题,提出一种基于小波时频图和多尺度卷积神经网络的发动机工况识别方法。首先,将原始信号通过连续小波转化为小波时频图,其次,对小波时频图进行统一的预处理,最后将处理好的图片输入到卷积神经网络中提取多尺度特征并分类识别。该方法有效结合了具有处理非线性平稳信号优势的小波时频分析和卷积神经网络的图像分析能力。在测试集数据转速不同的情况下,识别准确率和鲁棒性更好。 展开更多
关键词 汽车发动机 连续小波变换 小波时频图 卷积神经网络
下载PDF
基于混沌系统和离散小波变换的卷积神经网络的电力电缆故障诊断
10
作者 李周华 丛辉 《自动化应用》 2024年第9期25-29,共5页
针对传统电力电缆特征提取方法存在信息冗余及故障模型诊断不精准的问题,提出了一种基于混沌系统和离散小波变换的卷积神经网络的故障诊断算法,即采用离散小波变换对采集的局部放电信号进行滤波,采用洛伦兹混沌系统建立动态误差散布图... 针对传统电力电缆特征提取方法存在信息冗余及故障模型诊断不精准的问题,提出了一种基于混沌系统和离散小波变换的卷积神经网络的故障诊断算法,即采用离散小波变换对采集的局部放电信号进行滤波,采用洛伦兹混沌系统建立动态误差散布图以提取故障特征,最后通过卷积神经网络(CNN)进行故障识别。结合4种典型电力电缆绝缘故障及测试平台进行验证,结果表明,所提算法能够快速准确地识别电力电缆的故障状态,识别准确率达到97.5%,证明了所提算法的可行性和有效性,其能够为电力电缆的故障诊断提供一定的参考价值。 展开更多
关键词 离散小波变换 混沌系统 卷积神经网络 电力电缆 故障诊断
下载PDF
基于卷积神经网络的牵引电机定子绕组匝间短路故障诊断 被引量:1
11
作者 张宝杰 麻宸伟 +3 位作者 贾震 江周余 卢腾 宋文胜 《铁道学报》 EI CAS CSCD 北大核心 2024年第4期73-79,共7页
为实现牵引电机定子绕组匝间短路故障诊断,提出一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)的故障诊断方法。首先对电机健康状态、不同相发生匝间短路故障及不同故障严重程度下的定子电流进行三... 为实现牵引电机定子绕组匝间短路故障诊断,提出一种基于一维卷积神经网络(one-dimensional convolutional neural network, 1D-CNN)的故障诊断方法。首先对电机健康状态、不同相发生匝间短路故障及不同故障严重程度下的定子电流进行三层小波分解,得到小波分解高频系数和低频系数;求取小波分解系数的二范数,作为电机电流的特征;设计并训练1D-CNN,将训练好的1D-CNN作为分类器,实现牵引电机定子绕组匝间短路故障“端到端”的智能诊断。设计并搭建异步电机定子绕组匝间短路故障诊断实验平台。实验结果表明:所提方法可以准确有效诊断出轻微的匝间短路故障。在闭环控制下,电机发生1匝短路故障时,诊断正确率达到90.5%,并能够有效区分故障相。 展开更多
关键词 牵引电机 匝间短路 故障诊断 小波分解 卷积神经网络
下载PDF
基于神经网络架构搜索与特征融合的小样本脉搏波分类方法
12
作者 邢豫阳 陈丰 +4 位作者 毛晓波 孙智霞 逯鹏 乔云峰 窦亚美 《郑州大学学报(理学版)》 CAS 北大核心 2024年第6期54-61,共8页
基于深度学习的脉搏波分类依赖大量有标注数据,现有脉搏波带有疾病标注的数据少、标注方法不统一,导致模型准确率低、泛化能力弱。针对此问题,提出一种基于神经网络架构搜索与特征融合的小样本脉搏波分类方法。首先,在并行的双维度拆分... 基于深度学习的脉搏波分类依赖大量有标注数据,现有脉搏波带有疾病标注的数据少、标注方法不统一,导致模型准确率低、泛化能力弱。针对此问题,提出一种基于神经网络架构搜索与特征融合的小样本脉搏波分类方法。首先,在并行的双维度拆分卷积分支与因果空洞卷积分支中进行态射搜索,每次搜索结束,获取超网络分支的子网络作为候选网络进行训练评估。双维度拆分卷积分支提取脉搏波横、纵向维度时空特征,因果空洞卷积分支提取脉搏波节律特征。然后,利用特征融合方法整合分支多尺度特征。最后,依据评估指标得到最佳网络模型完成分类。实验结果表明,所提方法在两个小样本脉搏波数据集上准确率为97.04%和95.96%,F1值为97.04%和95.95%,具有较好分类效果。 展开更多
关键词 脉搏 小样本 神经网络架构搜索 特征融合 卷积神经网络
下载PDF
基于双通道时频卷积神经网络的故障电弧检测
13
作者 向泽林 杨洋 +1 位作者 李平 阳世群 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期192-202,共11页
交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的... 交流故障电弧产生的高温极易点燃周围的可燃材料,是引发电线火灾的重要原因之一.准确检测不同类型的故障电弧对于预防重大火灾事故的发生具有重要意义.然而故障电弧的复杂性与隐蔽性给检测方法带来了极大挑战.基于阈值和电流特征提取的技术难以全面概括故障电弧的特征,而大多数基于深度神经网络的方法直接对电流信号进行特征学习,忽略了信号中的频率信息,从而导致泛化能力差的问题.对此,本文提出了基于时频特征学习的双通道时频卷积神经网络的故障电弧识别方法,设计了可学习的自适应离散小波变换,用于提取一维信号中的多尺度特征,同时通过短时傅里叶变换获取二维的时频图像特征,分别在这2种特征信号上进行卷积,最后将2个通道中学习的特征进行融合,用于分类预测.通过对故障电弧发生器采集到的3种工况下电弧电流信号进行性能评估,验证所提方法的有效性.实验结果表明,该方法与其他同类方法相比具有更高的电弧识别准确率,达到了97.91%. 展开更多
关键词 故障电弧 特征融合 双通道时频卷积神经网络 自适应离散小波分解 傅立叶变换
下载PDF
基于SWT与改进卷积神经网络的轴承故障诊断 被引量:1
14
作者 龚俊 张月义 +1 位作者 陈思戢 刘靖楠 《现代电子技术》 北大核心 2024年第6期68-74,共7页
针对传统轴承故障诊断依赖专家经验且存在时频特征提取效果不佳,导致故障诊断效率和精度较低的问题,提出一种基于同步压缩小波变换(SWT)与改进卷积神经网络(CNN)的轴承故障诊断模型(SICNN)。首先,将一维的非平稳轴承振动信号通过SWT转... 针对传统轴承故障诊断依赖专家经验且存在时频特征提取效果不佳,导致故障诊断效率和精度较低的问题,提出一种基于同步压缩小波变换(SWT)与改进卷积神经网络(CNN)的轴承故障诊断模型(SICNN)。首先,将一维的非平稳轴承振动信号通过SWT转换为高频率表达的二维时频图像,作为卷积神经网络的输入;然后,引入SRM对提取的特征进行风格池化与融合,调整卷积通道合适的特征权重,提高重要特征的关注度进而提高网络的表征能力;最后,通过Softmax层输出故障诊断结果。为了验证所提出的模型性能,使用凯斯西储大学采集的轴承数据集开展实验。结果表明,该模型故障诊断准确率可达到99.88%,与其他传统方法相比,具有良好的可行性和收敛性能,实践层面应用价值较高。 展开更多
关键词 故障诊断 滚动轴承 同步压缩小波变换 卷积神经网络 通道注意力模块 注意力机制
下载PDF
基于卷积神经网络的肌电信号人体运动模式识别技术
15
作者 刘亚丽 鲁妍池 +1 位作者 马勋举 宋遒志 《兵工学报》 EI CAS CSCD 北大核心 2024年第7期2144-2158,共15页
随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的... 随着外骨骼机器人等肌电控制设备的快速发展,表面肌电信号此类非平稳、非周期信号在高性能运动识别系统中的应用已成为相关研究领域的重点。为实现肌电信号跨域特征融合,提出一种基于肌电信号的双卷积链神经网络模型,采集7块关键肌肉的原始肌电信号,经特征提取,转化为能量核相图和离散小波变换系数特征图,分别输入双卷积链神经网络的卷积神经网络分支和MobileNetV2分支,利用融合模块提取高层隐藏特征并进行充分交互。制备包括以上两种特征图像和传统肌电信号图谱在内的3种数据集。3组交叉实验结果表明:所提方法对6种自测下肢运动的平均识别准确率达94.19%,显著优于其他特征组合与网络架构;在ENABL3S开源数据集识别7种下肢运动中取得98.32%的稳态识别准确率,进一步验证了所提方法优良的肌电特征捕捉能力和模式识别准确性。 展开更多
关键词 外骨骼机器人 表面肌电信号 运动模式识别 卷积神经网络 能量核 小波变换分析
下载PDF
基于小波散射卷积神经网络的结构损伤识别 被引量:2
16
作者 马亚飞 李诚 +2 位作者 何羽 王磊 涂荣辉 《振动与冲击》 EI CSCD 北大核心 2023年第14期138-146,共9页
损伤识别是结构状态评估领域的关键问题之一,对确保结构安全性有重要意义。深度学习算法在基于振动的结构损伤识别方面带来了许多突破,但从海量数据中挖掘结构损伤关键信息仍是亟待解决的技术难题。该研究提出了基于一维卷积神经网络(on... 损伤识别是结构状态评估领域的关键问题之一,对确保结构安全性有重要意义。深度学习算法在基于振动的结构损伤识别方面带来了许多突破,但从海量数据中挖掘结构损伤关键信息仍是亟待解决的技术难题。该研究提出了基于一维卷积神经网络(one-dimensional-convolutional neural network,1D-CNN)深度学习的结构多类型损伤识别模型,采用小波散射变换对1D-CNN架构第一层卷积滤波器进行替换,通过散射系数实现输入层原始数据降维与特征提取,结合CNN卷积层、激活层和池化层实现监测数据特征增强处理。在此基础上,结合1D-CNN全连接层与Softmax函数实现特征数据分类,从而实现结构多类型损伤定位与定量高效识别。通过钢桁架结构和斜拉桥两种数值模型对上述框架进行了验证。结果表明:与普通卷积神经网络模型相比,基于小波散射卷积神经网络的结构损伤识别精度显著提升,损伤分类准确率达95.0%以上。随着传感数据环境噪声比例的增加,小波散射卷积神经网络损伤分类准确率虽略有下降,但仍保持较高精准度,说明该方法具有较强的鲁棒性抗噪能力。 展开更多
关键词 结构状态评估 深度学习 小波散射变换 卷积神经网络(CNN) 损伤识别
下载PDF
基于小波变换与卷积神经网络的羊脸识别模型 被引量:2
17
作者 黄铝文 谦博 +2 位作者 关非凡 侯紫霞 张其 《农业机械学报》 EI CAS CSCD 北大核心 2023年第5期278-287,共10页
为解决养殖场条件下羊只的个体识别问题,本文基于小波变换与卷积神经网络,提出一种融合频域特征与空间域特征的羊脸识别模型DWT-GoatNet。首先采集总计30只高相似度西农萨能奶山羊日间、夜间两种不同光照环境下的面部图像,基于SSIM指标... 为解决养殖场条件下羊只的个体识别问题,本文基于小波变换与卷积神经网络,提出一种融合频域特征与空间域特征的羊脸识别模型DWT-GoatNet。首先采集总计30只高相似度西农萨能奶山羊日间、夜间两种不同光照环境下的面部图像,基于SSIM指标剔除其中相似度过高的样本,接着进行图像裁剪,并通过模糊、调整亮度、平移、旋转、加入噪声、缩放等方法完成数据增强;然后,设计基于二维离散小波变换(2D-DWT)与卷积运算的羊脸特征提取模块,完成特征融合;之后,以前述羊脸特征提取模块为基础,添加分类模块,进行卷积神经网络搭建;最后,进行超参数组合寻优,形成羊脸识别模型。试验结果表明,本文所构建的羊脸识别模型在日间、夜间两种不同光照环境下测试集上识别准确率分别可达99.74%和99.89%,高于AlexNet、VGGNet-16、GoogLeNet、ResNet-50、DenseNet-121等经典卷积神经网络模型,说明所构建模型适用于羊只的个体识别,为精准养殖、农险理赔领域相关工作提供了有效解决方案。 展开更多
关键词 羊脸识别 小波变换 卷积神经网络 频域特征 特征融合
下载PDF
基于多源小波变换神经网络的旋转机械轴承故障诊断
18
作者 郭海宇 邹圣公 +4 位作者 张晓光 陆凡凡 陈洋 王涵 徐新志 《中国机械工程》 EI CAS CSCD 北大核心 2024年第11期2026-2034,共9页
针对旋转机械轴承故障诊断中故障样本稀缺,以及传统模型在小样本条件下容易过拟合及泛化能力差的问题,提出一种多源小波时频变换卷积神经网络。针对单支振动传感器采集的高频数据,设计基于小波变换的时频卷积层,用于融合小波系数的实部... 针对旋转机械轴承故障诊断中故障样本稀缺,以及传统模型在小样本条件下容易过拟合及泛化能力差的问题,提出一种多源小波时频变换卷积神经网络。针对单支振动传感器采集的高频数据,设计基于小波变换的时频卷积层,用于融合小波系数的实部与虚部,其中实部对应振动信号的幅值信息,虚部对应相位信息。与仅考虑实部的卷积层相比,该卷积层能够提取完整的时频特征。利用时频卷积层分别对同一设备上的多支传感器采集的高频数据进行特征提取,并将提取到的多个特征进行级联。设计基于轻量深度可分离卷积的密集模块对级联特征进行更深层次的特征提取,用于实现故障分类。利用凯斯西储大学滚动轴承数据集验证模型的有效性,准确率为98.5%。将模型应用于回转窑、皮带机和篦冷风机的轴承故障诊断,平均准确率达97.19%。 展开更多
关键词 轴承故障诊断 卷积神经网络 小波时频变换 多传感器
下载PDF
基于卷积神经网络的ECG心律失常分类研究
19
作者 杨风健 李小琪 李洪亮 《电子设计工程》 2024年第9期165-169,共5页
基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批... 基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批大小三个超参数来优化模型,使用准确率、灵敏性和正预测率三个指标评价模型性能。实验结果表明,模型实现心律失常五分类的整体准确率大于99%,与现有模型性能相比,准确率提升1.2%。 展开更多
关键词 卷积神经网络 心律失常 心电信号 小波变换
下载PDF
基于多尺度卷积神经网络和注意力机制的模拟电路早期故障诊断方法
20
作者 徐欣 侯成凯 《电子器件》 CAS 2024年第4期929-934,共6页
模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采... 模拟电路具有非线性、元件容差等特性,导致不同故障模式之间存在混叠现象,特别是模拟电路早期故障,这大大增加了故障诊断的难度。因此,提出了一种基于小波变换和多尺度特征注意力卷积神经网络(MS-FACNN)的模拟电路早期故障诊断方法,采用小波变换得到脉冲响应信号的多尺度分量,利用设计好的MS-FACNN网络自动提取更加全面且高可分性故障特征,并实现故障模式识别。此外,采用高效通道注意力(ECA)聚焦故障高相关性特征,过滤低相关性的冗余信息,进一步提升模型特征提取能力。实验结果表明,相比传统方法,所提方法具有更强的故障特征提取能力,对四运放双二阶高通滤波器早期故障诊断的准确率达到99.18%。 展开更多
关键词 模拟电路 早期故障诊断 小波变换 多尺度卷积神经网络 有效通道注意力
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部