期刊文献+
共找到1,619篇文章
< 1 2 81 >
每页显示 20 50 100
基于支持向量机(SVM)的古代玻璃制品分类
1
作者 高国云 王青芸 《赣南师范大学学报》 2024年第3期19-22,共4页
古代玻璃制品是古丝绸之路交易的商品之一,一般依据化学成分对玻璃制品进行分类.但是风化会改变玻璃制品化学成分的含量,从而影响玻璃制品类型的鉴别.本文尝试先预测风化前的化学成分以消除风化的影响,再采用灰色关联分析化学成分的关... 古代玻璃制品是古丝绸之路交易的商品之一,一般依据化学成分对玻璃制品进行分类.但是风化会改变玻璃制品化学成分的含量,从而影响玻璃制品类型的鉴别.本文尝试先预测风化前的化学成分以消除风化的影响,再采用灰色关联分析化学成分的关联关系以及差异,最后建立支持向量机(SVM)模型对古代玻璃制品进行分类. 展开更多
关键词 支持向量(svm) 系统聚类 灰色关联分析 古代玻璃 玻璃风化
下载PDF
基于多级支持向量机的配电网故障识别方法
2
作者 程慧 陈艳 《山西大同大学学报(自然科学版)》 2024年第3期55-59,共5页
构建了母线电压和主变低压侧电流波形的时频矩阵,并应用奇异值分解(SVD)技术提取波形的奇异谱,进而获得表示奇异值大小的奇异谱均值和描述信号复杂度的奇异熵等关键参数作为特征向量。通过仿真和实际测试,验证了该方法在各种典型条件下... 构建了母线电压和主变低压侧电流波形的时频矩阵,并应用奇异值分解(SVD)技术提取波形的奇异谱,进而获得表示奇异值大小的奇异谱均值和描述信号复杂度的奇异熵等关键参数作为特征向量。通过仿真和实际测试,验证了该方法在各种典型条件下的识别精度均超过90%,证明了它在识别各种故障类型方面的有效性、适应性和实用性。 展开更多
关键词 配电网故障 时频矩阵 奇异值分解 多级支持向量
下载PDF
基于支持向量机的人体异常步态特征识别方法研究
3
作者 杨莉杰 《信息与电脑》 2024年第2期119-121,共3页
人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开... 人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开展CASIA-B和OUMVLP数据集的测试实验,验证该方法在步态识别上的准确性比传统反向传播(Back Propagation,BP)神经网络更高,为复杂行为识别研究提供了新视角。 展开更多
关键词 支持向量(svm) 人体异常步态 特征识别 模型构建
下载PDF
基于支持向量机的带式输送机智能控制系统设计
4
作者 王京涛 《信息记录材料》 2024年第10期115-117,共3页
带式输送机是工业生产中常见的机械设备,用于高效、连续地运输各种散装物料或成件产品。随着自动化和智能化技术的发展,对输送机系统的控制需求日益增加,特别是在操作特点和控制参数的精确调整方面。支持向量机(support vector machine,... 带式输送机是工业生产中常见的机械设备,用于高效、连续地运输各种散装物料或成件产品。随着自动化和智能化技术的发展,对输送机系统的控制需求日益增加,特别是在操作特点和控制参数的精确调整方面。支持向量机(support vector machine, SVM)是一种强大的机器学习方法,能够处理非线性问题并优化决策边界,使其在复杂系统的智能控制中显示出独特优势。本文详细介绍了基于支持向量机的带式输送机智能控制系统的设计与实现,包括硬件选型、外围器件整合以及软件系统的开发,重点讨论了如何通过智能控制技术优化输送机的操作效率和稳定性,并实现了面向操作特点的自动调节功能和人脸识别等安全特性的集成。 展开更多
关键词 支持向量(svm) 带式输送 智能控制
下载PDF
基于麻雀搜索算法优化支持向量机的瓶盖装配检测研究 被引量:2
5
作者 张冬至 韩栋星 +1 位作者 毛瑞源 郗广帅 《河南师范大学学报(自然科学版)》 CAS 北大核心 2023年第1期29-38,F0002,共11页
针对基于支持向量机的瓶盖装配检测算法准确度不高、调参难度大的问题,提出通过麻雀搜索算法(Sparrow Search Algorithm,SSA)对支持向量机(Support Vector Machines,SVM)的关键参数寻找最优解.采集瓶盖部位图像,包括标准、歪斜、铝塑分... 针对基于支持向量机的瓶盖装配检测算法准确度不高、调参难度大的问题,提出通过麻雀搜索算法(Sparrow Search Algorithm,SSA)对支持向量机(Support Vector Machines,SVM)的关键参数寻找最优解.采集瓶盖部位图像,包括标准、歪斜、铝塑分离、胶塞缺失、高盖5种类型.提取6个典型特征构建数据集,采用二分类支持向量机分类,分别通过遗传算法、粒子群算法和麻雀搜索算法对支持向量机参数进行调节.训练结果表明,麻雀搜索算法优化后的支持向量机模型测试准确率达到98.33%,高于其他几种算法.基于SSA-SVM的瓶盖装配检测模型识别精度高,调参速度快,泛化能力强. 展开更多
关键词 瓶盖装配检测 器视觉 图像处理 支持向量(svm) 麻雀搜索算法(SSA)
下载PDF
SVM方法在某多级离心泵故障诊断中的应用 被引量:3
6
作者 李有根 马文生 +1 位作者 李方忠 王庆锋 《机械强度》 CAS CSCD 北大核心 2024年第2期272-280,共9页
针对实际工程中多级离心泵故障样本难获取的现象,通过多级离心泵故障模拟试验台模拟实际产品的碰摩、不对中、不平衡三种典型故障,基于支持向量机(Support Vector Machine,SVM)建立故障诊断模型的方法实现故障的分类。采用集合经验模态... 针对实际工程中多级离心泵故障样本难获取的现象,通过多级离心泵故障模拟试验台模拟实际产品的碰摩、不对中、不平衡三种典型故障,基于支持向量机(Support Vector Machine,SVM)建立故障诊断模型的方法实现故障的分类。采用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)算法提取振动信号的时频域特征,结合时、频域和信息熵特征构造高维特征样本后,以主成分分析(Principal Component Analysis,PCA)优化输入样本质量,实现对故障的高效分类。另外,对比分析SVM和反向传播(Back Propagation,BP)神经网络的分类效果,表明SVM模型分类的效果更好,在多级离心泵的故障诊断中具有良好的适用性。 展开更多
关键词 多级离心泵 支持向量 BP神经网络 集合经验模态分解 主成分分析
下载PDF
基于振动信号PSD-SVM方法的不定负荷下柴油机气阀间隙异常故障诊断 被引量:1
7
作者 聂浩淼 车驰东 《振动与冲击》 EI CSCD 北大核心 2024年第2期299-305,共7页
针对许多基于振动信号的故障诊断方法在不同负荷下的诊断不全面的问题。提出了一种基于功率谱密度(power spectral density,PSD)与支持向量机(support vector machine,SVM)的故障诊断方法。该方法将振动信号功率经过滑动平均滤波(moving... 针对许多基于振动信号的故障诊断方法在不同负荷下的诊断不全面的问题。提出了一种基于功率谱密度(power spectral density,PSD)与支持向量机(support vector machine,SVM)的故障诊断方法。该方法将振动信号功率经过滑动平均滤波(moving average filter,MAF)处理,计算样本中每个周期的标准化信号的功率谱特征,再使用核方法SVM进行特征分类,从而实现故障诊断。经过柴油机实机测试,该方法对于不同负荷下的故障识别率达到96.72%,能有效识别不同负荷下的柴油机进排气阀间隙增大故障。 展开更多
关键词 故障诊断 振动测试 信号处理 支持向量(svm)
下载PDF
支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究 被引量:47
8
作者 张录达 苏时光 +2 位作者 王来生 李军会 杨丽明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2005年第1期33-35,共3页
支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大... 支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大黄样品真伪识别模型。对学习集中33个样品模型识别准确率为100%;对70个预测样品的识别准确率为9677%,为中药大黄的快速识别提供了参考。研究结果表明了SVM近红外光谱法建立生物样品识别模型的可行性。通过旨在介绍SVM学习方法的基本思想,以引起化学计量学工作者的进一步关注。 展开更多
关键词 大黄 中药 年轻 研究结果 准确率 样品 近红外光谱法 支持向量(svm) 统计学习理论 识别
下载PDF
基于多级支持向量机分类器的电力变压器故障识别 被引量:57
9
作者 吕干云 程浩忠 +1 位作者 董立新 翟海保 《电力系统及其自动化学报》 CSCD 北大核心 2005年第1期19-22,52,共5页
支持向量机是以统计学习理论为基础发展起来的新的通用学习方法 ,较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程 ,对色谱分析法检测到... 支持向量机是以统计学习理论为基础发展起来的新的通用学习方法 ,较好地解决了小样本、高维数、非线性等学习问题。提出了一种基于多级支持向量机分类器的电力变压器故障识别方法。该方法首先通过特殊数值处理过程 ,对色谱分析法检测到的特征气体含量进行数值预处理 ,提取出故障识别所需要的 6个特征量 ,然后利用数值预处理后得到的数据样本分别对三级支持向量机进行训练和识别 ,并最后判断输出变压器所处的状态。测试结果表明 ,该方法具有三个优点 :1 )具有较强的鲁棒性 ,识别正确率极高 ;2 )训练时间很短 ,实时性能好 ;3 )不存在局部极小问题。 展开更多
关键词 故障识别 多级支持向量 分类器 电力变压器
下载PDF
基于广义正态分布算法优化支持向量机的电机轴承故障诊断研究
10
作者 陈鑫洋 李水明 《现代制造技术与装备》 2023年第9期53-55,共3页
为了提高旋转机械设备故障诊断的准确率,提出一种基于广义正态分布优化(Generalized Normal Distribution Optimization,GNDO)的支持向量机(Support Vector Machine,SVM)算法。在SVM算法的基础上,使GNDO对其进行寻优求解,找到SVM算法的... 为了提高旋转机械设备故障诊断的准确率,提出一种基于广义正态分布优化(Generalized Normal Distribution Optimization,GNDO)的支持向量机(Support Vector Machine,SVM)算法。在SVM算法的基础上,使GNDO对其进行寻优求解,找到SVM算法的最优参数组,以此推导出GNDO-SVM算法。结果表明,在电机轴承故障诊断中,GNDO-SVM算法相较于SVM算法的分类准确率提高了3.9个百分点,有着更好的有效性和准确性。 展开更多
关键词 故障诊断 支持向量(svm) 轴承 广义正态分布优化(GNDO)
下载PDF
基于LCD-Hilbert谱奇异值和多级支持向量机的配电网故障识别方法 被引量:35
11
作者 郭谋发 游林旭 +2 位作者 洪翠 高伟 王锐凤 《高电压技术》 EI CAS CSCD 北大核心 2017年第4期1239-1247,共9页
准确识别故障类型是配电网故障处理的首要任务。提出了一种基于时频矩阵奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障识别方法。利用局部特征尺度分解法(LCD)、Hilbert变换以及带通滤波算法,构造配电网母线电压、主变低压侧进线... 准确识别故障类型是配电网故障处理的首要任务。提出了一种基于时频矩阵奇异值分解(SVD)和多级支持向量机(SVM)的配电网故障识别方法。利用局部特征尺度分解法(LCD)、Hilbert变换以及带通滤波算法,构造配电网母线电压、主变低压侧进线电流等波形的时频矩阵,对其进行奇异值分解以获取波形奇异谱,提取相应奇异谱的分布参数(如反映奇异值大小的奇异谱均值、反映信号复杂程度的奇异熵等)作为特征向量。将特征向量输入基于多级SVM的分类器以实现故障识别。各类典型工况下的仿真和实验结果表明该识别方法的正确率均>90%,可实现对各类不同故障的有效辨识,且具有很强的适应性和实用性。 展开更多
关键词 配电网故障 时频矩阵 奇异值分解 局部特征尺度分解 带通滤波 多级支持向量
下载PDF
采用时频矩阵奇异值分解和多级支持向量机的雷电及操作过电压识别 被引量:28
12
作者 杨勇 李立浧 +3 位作者 杜林 李欣 司马文霞 戴斌 《电网技术》 EI CSCD 北大核心 2012年第8期31-37,共7页
雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电... 雷电及操作过电压的识别,对改进和提高电力系统绝缘配合水平具有重要意义。提出了一种基于时频矩阵奇异值分解(singular value decomposition,SVD)和多级支持向量机(support vector machine,SVM)的雷电及操作过电压识别方法,通过对过电压信号的小波分解,构建多尺度时频矩阵,利用SVD对该矩阵进行奇异值分解,将信号分解到不同的时频特征子空间,然后获取过电压信号的奇异谱,并计算奇异谱的特征量,将这些特征量作为多级SVM的输入,实现雷电及操作过电压的辨识。对变电站实测5种过电压信号的计算表明:提取的特征量维数低,对过电压信号的电磁干扰具有相对稳定性;采用的识别方法训练次数少,识别率高,能够实现雷电及操作过电压的准确分类。 展开更多
关键词 雷电过电压 操作过电压 特征提取 奇异值分解 过电压识别 多级支持向量
下载PDF
基于邻域粗糙集与多核支持向量机的变压器多级故障诊断 被引量:50
13
作者 李春茂 周妺末 +2 位作者 刘亚婕 高波 吴广宁 《高电压技术》 EI CAS CSCD 北大核心 2018年第11期3474-3482,共9页
针对传统变压器故障诊断过程中故障征兆与故障类型间映射关系的不确定性及模糊性问题,根据粗糙集知识与多核学习理论,构建了一种变压器多级故障诊断模型。该方法基于溶解气体分析(DGA)诊断标准,以5种特征气体及16种气体比值作为初始... 针对传统变压器故障诊断过程中故障征兆与故障类型间映射关系的不确定性及模糊性问题,根据粗糙集知识与多核学习理论,构建了一种变压器多级故障诊断模型。该方法基于溶解气体分析(DGA)诊断标准,以5种特征气体及16种气体比值作为初始特征量,并利用邻域粗糙集知识按属性重要度大小获取在所诊断故障类型上高重要度的最小故障特征信息集。在深入挖掘DGA所含故障信息的基础上,建立分级故障诊断模型,以二分类支持向量机作为分类器,利用最小故障特征信息集进行多级故障诊断。此外,采用反正切变换处理各输入特征,避免了油中溶解气体长尾分布而导致的误分情况;同时,各支持向量机皆采用多核学习,以解决单核支持向量机数据敏感性强,鲁棒性低的缺陷。实例分析表明:与传统特征量相比,新提出特征量下的各诊断层准确率均能较稳定的达到88%以上,且最小运行时长可达0.337 5 s,具备提高分类精度,减小运行时间与算法结构的明显优势。另外,与传统故障诊断方法相比,该多级诊断的模型不仅能更深层次挖掘故障特征信息,降低冗余特征信息的复杂性,并且可有效提高诊断平均准确率3%以上,具有更高的准确度与可靠性。 展开更多
关键词 变压器 反正切变换 邻域粗糙集 特征重要度 多核支持向量 多级故障诊断
下载PDF
基于支持向量机(SVM)的回采工作面瓦斯涌出混沌预测方法研究 被引量:14
14
作者 何利文 施式亮 +1 位作者 宋译 刘影 《中国安全科学学报》 CAS CSCD 北大核心 2009年第9期42-46,共5页
针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024... 针对瓦斯涌出传统的线性预测方法存在的问题,根据瓦斯涌出时间序列固有的确定性和非线性,利用混沌动力系统的相空间延迟坐标重构理论,结合基于机器学习理论的支持向量机(SVM),建立基于SVM理论的瓦斯涌出混沌时间序列预测模型。经Ⅱ1024回采工作面瓦斯涌出时间序列仿真计算,仿真结果显示该预测模型具有比传统的回归方法更好的泛化能力,预测方法具有很高的预测精度。同时,该模型具有以往传统机器学习的瓦斯涌出预测模型建立简便、训练速度快等优点。由于充分考虑瓦斯涌出时间序列的混沌性,并利用SVM预测的优良特性,使得预测更科学。 展开更多
关键词 支持向量(svm) 瓦斯涌出 混沌 相空间重构 时间序列
下载PDF
基于模糊支持向量机的多级二叉树分类器的水轮机调速系统故障诊断 被引量:36
15
作者 张国云 章兢 《中国电机工程学报》 EI CSCD 北大核心 2005年第8期100-104,共5页
在传统支持向量机(C-SVM)的基础上,通过集成模糊聚类技术和支持向量机算法,构造了一种适合于故障诊断的多级二叉树分类器,并首次应用于水轮机调速系统故障诊断,取得了良好效果。该方法首先利用模糊聚类技术求取每类样本聚类中心,再对各... 在传统支持向量机(C-SVM)的基础上,通过集成模糊聚类技术和支持向量机算法,构造了一种适合于故障诊断的多级二叉树分类器,并首次应用于水轮机调速系统故障诊断,取得了良好效果。该方法首先利用模糊聚类技术求取每类样本聚类中心,再对各聚类中心逐次二分,从而确定了一棵二叉树,然后在二叉树的每个节点处,根据样本聚类中心把相应样本分成两类,构造出SVM 子分类器。实验结果表明,对于k 类别故障诊断问题,只需构造k-1 个SVM 子分类器,简化了分类器结构,避免了不可区分区域的出现,且节省了内存开销,故障诊断正确率高。 展开更多
关键词 系统故障诊断 树分类器 模糊支持向量 水轮 调速 多级 支持向量算法 聚类中心 聚类技术 诊断问题 二叉树 svm 构造 样本 k-1 分区域 正确率 二分 内存
下载PDF
电力系统暂时过电压多级支持向量机分层识别 被引量:19
16
作者 杜林 李欣 +1 位作者 王丽蓉 司马文霞 《电力系统保护与控制》 EI CSCD 北大核心 2012年第4期26-31,36,共7页
提出了一种电力系统暂时过电压多级支持向量机(M-SVM)分层识别的方法。根据暂时过电压分类,建立暂时过电压分层识别系统,并采用'二分树'法构建多级支持向量机分类器。在变电站实测过电压数据的基础上,提取了三相及零序电压的时... 提出了一种电力系统暂时过电压多级支持向量机(M-SVM)分层识别的方法。根据暂时过电压分类,建立暂时过电压分层识别系统,并采用'二分树'法构建多级支持向量机分类器。在变电站实测过电压数据的基础上,提取了三相及零序电压的时域统计特征和小波时频特征,同时对特征量进行逐级选择,将这些特征量作为M-SVM的输入,实现暂时过电压类型辨识。现场数据测试表明,采用的M-SVM分层识别方法具有训练样本少、训练时间短、识别率高的优点,可较好地应用于电力系统暂时过电压类型识别。 展开更多
关键词 暂时过电压 特征提取 过电压识别 零序电压 分层识别系统 多级支持向量
下载PDF
煤与瓦斯突出预测的支持向量机(SVM)模型 被引量:36
17
作者 师旭超 韩阳 《中国安全科学学报》 CAS CSCD 北大核心 2009年第7期26-30,共5页
基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分... 基于支持向量机(SVM)分类算法,考虑影响煤与瓦斯突出的主要因素,建立了煤与瓦斯突出预测的SVM模型。该模型选取开采深度、瓦斯压力、瓦斯放散初速度、煤的坚固性系数以及地质破坏程度5个指标作为模型输入量,同时将煤与瓦斯突出程度划分为无突出、小型突出、中型突出和大型突出4个等级,进而使其评判结果更为细化。以实测数据作为学习样本进行训练,建立相应判别函数对待判样本进行预测。通过算例分析,表明该模型的方法对煤与瓦斯突出预测的合理性与有效性,可以在实际工程中推广。 展开更多
关键词 煤与瓦斯突出 支持向量(svm) 预测 方法
下载PDF
基于多级聚类分析和支持向量机的空间负荷预测方法 被引量:61
18
作者 肖白 聂鹏 +2 位作者 穆钢 王吉 田莉 《电力系统自动化》 EI CSCD 北大核心 2015年第12期56-61,共6页
为充分利用元胞负荷与元胞属性之间的相关联系来改善空间负荷预测效果,提出了基于多级聚类分析和支持向量机的空间负荷预测方法。首先生成元胞并建立元胞属性集合,根据各属性对元胞进行多级聚类分析,其中采用改进的k-均值算法确定聚类... 为充分利用元胞负荷与元胞属性之间的相关联系来改善空间负荷预测效果,提出了基于多级聚类分析和支持向量机的空间负荷预测方法。首先生成元胞并建立元胞属性集合,根据各属性对元胞进行多级聚类分析,其中采用改进的k-均值算法确定聚类数目和初始聚类中心,来得到逐级细化的元胞分类;然后针对不同类型的元胞建立各自的支持向量机预测模型,同时利用遗传算法进行参数优化以提高预测模型的适应度;最后将待预测元胞的相关属性作为输入向量并代入所建立的预测模型中计算出目标年各元胞负荷最大值,从而实现空间负荷预测。工程实例分析表明了该方法的实用性和有效性。 展开更多
关键词 空间负荷预测 多级聚类分析 支持向量 遗传算法 元胞负荷
下载PDF
支持向量机(SVM)方法在降水分类预测中的应用 被引量:20
19
作者 杨淑群 芮景析 冯汉中 《西南农业大学学报(自然科学版)》 CSCD 北大核心 2006年第2期252-257,共6页
支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建... 支持向量学习机(SVM)是基于统计学习理论的模式分类器,将SVM方法应用于降水异常的分类预测中尚属首次。主要利用1958—2003年逐月的74个环流特征量、NINO 3,NINO 4海温指数、相关区域海平面气压、500 HPA、100HPA有关指数资料等,分别建立了四川盆地5片区降水距平百分率大于50%(特多)和小于-50%(特少)的2个SVM推理模型,并进行了降水分类预测试验和2005年1-3月实际预测,结果显示出所建SVM推理模型的Ts评分较高,具有一定的预测能力,展示了SVM的优越性和推广前景,可在短期气候预测业务中参考应用。 展开更多
关键词 支持向量(svm) 推理模型 降水 分类预测
下载PDF
基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究 被引量:21
20
作者 李昕燃 靳伍银 《振动与冲击》 EI CSCD 北大核心 2023年第6期106-114,共9页
针对群智能算法优化支持向量机模型应用在滚动轴承故障诊断领域中易陷入局部最优、准确率较低的问题,提出了一种基于改进麻雀算法(sparrow search algorithm,SSA)优化支持向量机(support vector machine,SVM)的滚动轴承故障诊断方法。... 针对群智能算法优化支持向量机模型应用在滚动轴承故障诊断领域中易陷入局部最优、准确率较低的问题,提出了一种基于改进麻雀算法(sparrow search algorithm,SSA)优化支持向量机(support vector machine,SVM)的滚动轴承故障诊断方法。首先引入均匀化分布Chebyshev混沌映射初始化麻雀种群,以提高种群空间分布均匀性,之后将自适应惯性权重融入麻雀算法的发现者位置更新,最后对更新位置后的最优麻雀进行随机游走扰动,提高算法的全局和局部搜索能力,避免算法陷入局部最优。将该算法用于支持向量机的参数优化,构建改进麻雀算法优化支持向量机故障诊断模型实现对轴承故障信号的分类诊断。滚动轴承故障诊断试验分析结果表明,该算法模型故障分类效果明显优于粒子群算法优化支持向量机模型、遗传算法优化支持向量机模型和麻雀算法优化支持向量机模型,能够有效识别滚动轴承各故障类型。 展开更多
关键词 故障诊断 滚动轴承 游走 麻雀搜索算法(SSA) 支持向量(svm)
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部