By introducing the bit-level multi-stream coded Layered Space-Time (LST) transmitter along with a novel iterative MultiStage Decoding (MSD) at the receiver, the paper shows how to achieve the near-capacity perform...By introducing the bit-level multi-stream coded Layered Space-Time (LST) transmitter along with a novel iterative MultiStage Decoding (MSD) at the receiver, the paper shows how to achieve the near-capacity performance of the Multiple-Input Multiple-Output (MIMO) systems with square Quadrature Amplitude Modulation (QAM). In the proposed iterative MSD scheme, the detection at each stage is equivalent to multiuser detection of synchronous Code Division Multiple Access (CDMA) multiuser systems with the aid of the binary representation of the transmitted symbols. Therefore, the optimal Soft-Input Soft-Output (SISO) multiuser detection and low-complexity SISO multiuser detection can be utilized herein. And the proposed scheme with low-complexity SISO multiuser detection has polynomial complexity in the number of transmit antennas M, the number of receive antennas N, and the number of bits per constellation point Me. Simulation results demonstrate that the proposed scheme has similar Bit Error Rate (BER) performance to that of the known Iterative Tree Search (ITS) detection.展开更多
Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper ...Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper studies the low-density parity-check(LDPC) coding scheme for improving the reliability of multi-level-cell(MLC) NAND Flash memory in radiation environments. Firstly, based on existing physical experiment works, we introduce a new error model for heavyion irradiations; secondly, we explore the optimization of writing voltage allocation to maximize the capacity of the storage channel; thirdly, we design the degree distribution of LDPC codes that is specially suitable for the proposed model; finally, we propose a joint detection-decoding scheme based on LDPC codes, which estimates the storage channel state and executes an adaptive log-likelihood ratio(LLR) calculation to achieve better performance. Simulation results show that, compared with the conventional LDPC coding scheme, the proposed scheme may almost double the lifetime of the MLC NAND Flash memory in radiation environments.展开更多
The purpose of this paper is to design and implement a secure open database system for organizations that are increasingly opened up their information for easy access by different users. The work proposed some functio...The purpose of this paper is to design and implement a secure open database system for organizations that are increasingly opened up their information for easy access by different users. The work proposed some functionalities such as open password entry with active boxes, combined encryption methods and agent that can be incorporated into an open database system. It designed and implemented an algorithm that would not allow users to have free access into open database system. A user entering his password only needs to carefully study the sequence of codes and active boxes that describe his password and then enter these codes in place of his active boxes. The approach does not require the input code to be hidden from anyone or converted to place holder characters for security reasons. Integrating this scheme into an open database system is viable in practice in term of easy use and will improve security level of information.展开更多
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth(PEG) algorithm is an efficient method to construct relatively short block length low-density pari...Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth(PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check(LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and quasi-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.展开更多
基金the National Natural Science Foundation of China (No. 60472098 and No. 60502046).
文摘By introducing the bit-level multi-stream coded Layered Space-Time (LST) transmitter along with a novel iterative MultiStage Decoding (MSD) at the receiver, the paper shows how to achieve the near-capacity performance of the Multiple-Input Multiple-Output (MIMO) systems with square Quadrature Amplitude Modulation (QAM). In the proposed iterative MSD scheme, the detection at each stage is equivalent to multiuser detection of synchronous Code Division Multiple Access (CDMA) multiuser systems with the aid of the binary representation of the transmitted symbols. Therefore, the optimal Soft-Input Soft-Output (SISO) multiuser detection and low-complexity SISO multiuser detection can be utilized herein. And the proposed scheme with low-complexity SISO multiuser detection has polynomial complexity in the number of transmit antennas M, the number of receive antennas N, and the number of bits per constellation point Me. Simulation results demonstrate that the proposed scheme has similar Bit Error Rate (BER) performance to that of the known Iterative Tree Search (ITS) detection.
基金supported by the National Basic Research Project of China(973)(2013CB329006)National Natural Science Foundation of China(NSFC,91538203)the new strategic industries development projects of Shenzhen City(JCYJ20150403155812833)
文摘Utilizing commercial off-the-shelf(COTS) components in satellites has received much attention due to the low cost. However, commercial memories suffer severe reliability problems in radiation environments. This paper studies the low-density parity-check(LDPC) coding scheme for improving the reliability of multi-level-cell(MLC) NAND Flash memory in radiation environments. Firstly, based on existing physical experiment works, we introduce a new error model for heavyion irradiations; secondly, we explore the optimization of writing voltage allocation to maximize the capacity of the storage channel; thirdly, we design the degree distribution of LDPC codes that is specially suitable for the proposed model; finally, we propose a joint detection-decoding scheme based on LDPC codes, which estimates the storage channel state and executes an adaptive log-likelihood ratio(LLR) calculation to achieve better performance. Simulation results show that, compared with the conventional LDPC coding scheme, the proposed scheme may almost double the lifetime of the MLC NAND Flash memory in radiation environments.
文摘The purpose of this paper is to design and implement a secure open database system for organizations that are increasingly opened up their information for easy access by different users. The work proposed some functionalities such as open password entry with active boxes, combined encryption methods and agent that can be incorporated into an open database system. It designed and implemented an algorithm that would not allow users to have free access into open database system. A user entering his password only needs to carefully study the sequence of codes and active boxes that describe his password and then enter these codes in place of his active boxes. The approach does not require the input code to be hidden from anyone or converted to place holder characters for security reasons. Integrating this scheme into an open database system is viable in practice in term of easy use and will improve security level of information.
基金supported by the National Natural Science Foundation of China(Grant No.61378010)the Natural Science Foundation of Shanxi Province(Grant No.2014011007-1)
文摘Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth(PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check(LDPC) codes. The qua-sicyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and quasi-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.