期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多级离散小波变换和LSTM模型的充电负荷短期预测方法 被引量:2
1
作者 刘颂 刘振阳 +3 位作者 郝毅 黄志刚 何发才 王梓 《电力大数据》 2022年第11期1-8,共8页
电动汽车作为一种清洁环保的出行方式受到了越来越多地欢迎,但电动汽车充电负荷日益增长将会对现有电网造成一定的冲击与影响。与常规负荷不同,电动汽车的充电负荷存在较大的随机性,准确地预测电动汽车充电负荷的变化,有助于电网稳定运... 电动汽车作为一种清洁环保的出行方式受到了越来越多地欢迎,但电动汽车充电负荷日益增长将会对现有电网造成一定的冲击与影响。与常规负荷不同,电动汽车的充电负荷存在较大的随机性,准确地预测电动汽车充电负荷的变化,有助于电网稳定运行。首先,本文针对各站电动汽车充电负荷曲线采用K-means算法进行聚类,减小充电负荷的波动性,同时,充电负荷时间序列是典型的非线性、非平稳时间序列,因此本文引入多级小波变化将充电负荷时间序列分解为多个复杂度较低的分量,帮助预测模型,挖掘其变化特征;然后,本文提出以历史充电负荷功率各级分量、天气数据、日期类型为输入的长短期记忆神经网络预测模型,并使用遗传算法来选择长短期记忆神经网络的最优超参数;最后,本文用实际数据验证了本文所提方法能够有效预测电动汽车的短期负荷。 展开更多
关键词 充电负荷预测 K-MEANS聚类 多级离散小波变换 LSTM模型 遗传算法
下载PDF
融合双通路注意力与VT-LSTM的金融时序预测 被引量:1
2
作者 戴宇睿 安俊秀 陶全桧 《计算机工程与应用》 CSCD 北大核心 2023年第12期157-165,共9页
针对现有研究对金融时序数据短期变化规律捕捉能力不足和预测精度不佳的问题,提出一种基于双通路注意力机制和改进转换门控LSTM(variant transformation-gated LSTM,VT-LSTM)的金融时序预测模型(dual-attention MDWT-CVT-LSTM)。使用多... 针对现有研究对金融时序数据短期变化规律捕捉能力不足和预测精度不佳的问题,提出一种基于双通路注意力机制和改进转换门控LSTM(variant transformation-gated LSTM,VT-LSTM)的金融时序预测模型(dual-attention MDWT-CVT-LSTM)。使用多级离散小波变换(MDWT)分解股指序列得到高频和低频数据,并在融合门控单元的LSTM中加入转换门控机制,构造VT-LSTM,其能有效把控短期突变信息。在双通路注意力网络中结合VT-LSTM与一维时序卷积(Conv1D),分别提取不同频度数据的空间局部特征和时序特征,对各子序列进行预测,实现多层级多通路的预测研究。在金融股指数据集和个股数据集上对不同模型进行实验比较,结果表明提出模型预测精度优于其他方法,有良好的可行性。 展开更多
关键词 金融时间序列 双通路注意力机制 时序卷积 多级离散小波变换 长短时记忆网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部