The tensile properties and fatigue behavior of an Al-Zn-Mg-Cu alloy were investigated by performing tensile tests and fatigue crack propagation (FCP) tests. The tensile results show that lower aging temperature modi...The tensile properties and fatigue behavior of an Al-Zn-Mg-Cu alloy were investigated by performing tensile tests and fatigue crack propagation (FCP) tests. The tensile results show that lower aging temperature modified retrogression and re-aging (RRA) process enhances the elongation, but reduces the strength of the alloy, as compared to conventional RRA process which employs peak aging temperature. Both ductility and strength, however, are increased by employing a natural aging prior to re-aging based on the former modified RRA process. Fatigue test results show that both routes reduce FCP rate. Especially, the lower re-aging temperature modified RRA process obtains the lowest FCP rate. Natural aging treatment could enhance the nucleation rate of GP zones. A large amount of GP zones could be cut by dislocations, which is responsible for the highest tensile strength and elongation, as well as lower FCP rate.展开更多
The effects of yttrium and artificial aging on AA2024 alloy were investigated.The developed samples were further subjected to artificial aging at 190℃for 1-10 h with an interval of 1 h.The metallurgical characterizat...The effects of yttrium and artificial aging on AA2024 alloy were investigated.The developed samples were further subjected to artificial aging at 190℃for 1-10 h with an interval of 1 h.The metallurgical characterization was done by scanning electron microscope and X-ray diffraction.The mechanical characterization like hardness and tensile strength of the samples was done using computerized Vickers hardness testing machine and universal testing machine.The microstructures revealed that addition of yttrium refined theα(Al)matrix and led to the formation of Al-Cu-Y intermetallic in the shape of Chinese script which strengthened the samples.Compared to the base metal,samples with yttrium addition showed better mechanical properties.The sample reinforced with 0.3 wt.%yttrium showed the highest mechanical properties with the hardness of 66 HV,UTS of 223 MPa,YS of 180 MPa,and elongation of 20.9%.The artificially aged samples showed that the peak hardening of all the samples took place within 5 h of aging at 190℃with Al2 Cu precipitation.Aging changed the intermetallic from Chinese script to the fibrous form.The optimum amount of yttrium addition to AA2024 was found to be 0.3 wt.%.展开更多
Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage st...Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.展开更多
The propagation of a weak probe field in a four-level N-type quantum system in the presence of spontaneously generated coherence(SGC) is theoretically investigated. The optical properties of the system are studied and...The propagation of a weak probe field in a four-level N-type quantum system in the presence of spontaneously generated coherence(SGC) is theoretically investigated. The optical properties of the system are studied and it is shown that the group velocity of light pulse can be controlled by relative phase of applied fields. By changing the relative phase of applied fields, the group velocity of light pulse changes from transparent subluminal to the transparent superluminal light propagation. Thus, the phase-controlled absorption-free superluminal light propagation is obtained without applying an incoherent laser fields to the system. The propagation of a weak probe light pulse is studied by solving the Maxwell's wave equation on numerical grid in space and time. Moreover, we study the third order self- and cross-Kerr susceptibility of probe field and calculate the nonlinear cross-phase shift for different values of intensity of applied fields. In addition, we take into account the effect of Doppler broadening on the light pulse propagation and it is found that a suitable choice of laser propagation directions allows us to preserve our results even in the presence of Doppler effect. It is demonstrated that by increasing the Doppler width of distribution to the room temperature,the dispersion changes from transparent subluminal to transparent superluminal light propagation which is our major motivation for this work.展开更多
基金Project(51171209)supported by the National Natural Science Foundation of ChinaProject(2012CB619506)supported by the National Basic Research Program of Chinasupported by the 2011 Program of Nonferrous Metals and Materials,China
文摘The tensile properties and fatigue behavior of an Al-Zn-Mg-Cu alloy were investigated by performing tensile tests and fatigue crack propagation (FCP) tests. The tensile results show that lower aging temperature modified retrogression and re-aging (RRA) process enhances the elongation, but reduces the strength of the alloy, as compared to conventional RRA process which employs peak aging temperature. Both ductility and strength, however, are increased by employing a natural aging prior to re-aging based on the former modified RRA process. Fatigue test results show that both routes reduce FCP rate. Especially, the lower re-aging temperature modified RRA process obtains the lowest FCP rate. Natural aging treatment could enhance the nucleation rate of GP zones. A large amount of GP zones could be cut by dislocations, which is responsible for the highest tensile strength and elongation, as well as lower FCP rate.
文摘The effects of yttrium and artificial aging on AA2024 alloy were investigated.The developed samples were further subjected to artificial aging at 190℃for 1-10 h with an interval of 1 h.The metallurgical characterization was done by scanning electron microscope and X-ray diffraction.The mechanical characterization like hardness and tensile strength of the samples was done using computerized Vickers hardness testing machine and universal testing machine.The microstructures revealed that addition of yttrium refined theα(Al)matrix and led to the formation of Al-Cu-Y intermetallic in the shape of Chinese script which strengthened the samples.Compared to the base metal,samples with yttrium addition showed better mechanical properties.The sample reinforced with 0.3 wt.%yttrium showed the highest mechanical properties with the hardness of 66 HV,UTS of 223 MPa,YS of 180 MPa,and elongation of 20.9%.The artificially aged samples showed that the peak hardening of all the samples took place within 5 h of aging at 190℃with Al2 Cu precipitation.Aging changed the intermetallic from Chinese script to the fibrous form.The optimum amount of yttrium addition to AA2024 was found to be 0.3 wt.%.
文摘Conventional thermoacoustic engines have a stack pore radius that is almost constant in the axial direction. Hence, a thermoacoustic engine is expected to improve the energy conversion efficiency using a multistage stack with multiple pore radii. The stack comprises several bundles of numerous narrow tubes with specified pore radii. The optimum pore radius of the stack is determined by the oscillation frequency and the temperature in the stack. Consequently, the suitable pore radius changes in the axial direction, because the temperature gradient exists along the stack axis. Therefore, a multistage stack with multiple pore radii is introduced, which achieves a desired optimum pore radius everywhere in the stack. The energy conversion efficiency of the multistage stack, which was studied experimentally for a straight-tube type thermoacoustic engine, was compared with that of a conventional single-stage stack. In these experiments, the improvement of the energy conversion efficiency was confirmed. A numerical method with the transmittance matrix to include the effect of a multistage stack was used, and good agreement between experimental and numerical results was obtained. The results make a future possibilities for stack design intended to higher thermoacoustic engine efficiency expect.
文摘The propagation of a weak probe field in a four-level N-type quantum system in the presence of spontaneously generated coherence(SGC) is theoretically investigated. The optical properties of the system are studied and it is shown that the group velocity of light pulse can be controlled by relative phase of applied fields. By changing the relative phase of applied fields, the group velocity of light pulse changes from transparent subluminal to the transparent superluminal light propagation. Thus, the phase-controlled absorption-free superluminal light propagation is obtained without applying an incoherent laser fields to the system. The propagation of a weak probe light pulse is studied by solving the Maxwell's wave equation on numerical grid in space and time. Moreover, we study the third order self- and cross-Kerr susceptibility of probe field and calculate the nonlinear cross-phase shift for different values of intensity of applied fields. In addition, we take into account the effect of Doppler broadening on the light pulse propagation and it is found that a suitable choice of laser propagation directions allows us to preserve our results even in the presence of Doppler effect. It is demonstrated that by increasing the Doppler width of distribution to the room temperature,the dispersion changes from transparent subluminal to transparent superluminal light propagation which is our major motivation for this work.