期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多级轴向加性网络的轻量级单图超分辨率
1
作者 邹观哲 黄可言 《应用数学进展》 2024年第4期1842-1852,共11页
信息技术发展日新月异,视觉信息的质量广受重视,图像超分辨率技术正因此经过了长久的迭代。但作为一个不适定问题,这项技术仍将是一个长久的难题。随着自注意力机制的出现及引入,传统卷积神经网络方法逐渐在性能上落后。然而,包含自注... 信息技术发展日新月异,视觉信息的质量广受重视,图像超分辨率技术正因此经过了长久的迭代。但作为一个不适定问题,这项技术仍将是一个长久的难题。随着自注意力机制的出现及引入,传统卷积神经网络方法逐渐在性能上落后。然而,包含自注意力的方法通常计算成本高昂,或是只能为节约计算成本在性能上妥协。因此,本文提出了一种多级轴向加性网络,很好地平衡了性能与成本。具体来说,我们首先设计了一种多级轴向注意力模块,在注意力机制内实现了轴向窗口的模式。然后,我们提出了一种高效的加性注意力,使注意力计算免于矩阵乘法运算。同时,我们还构建了一个轻量级的超分辨率网络MLAAN。最后,我们在五个基准数据集上评估了所提出的MLAAN的效果。在与SOTA方法的对比中,MLAAN在参数量较少的前提下体现了优越的超分辨率性能。 展开更多
关键词 单图像超分辨率 轻量级网络 多级轴向网络(mlaan) 多级轴向注意力模块(MLAAB)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部