Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite differ...Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite difference method, Fourier pseudospectral method and wavelet collocation method for spatial discretizations, a series of high accurate conservative algorithms are presented. The proposed algorithms can preserve the corresponding discrete charge and energy conservation laws exactly, which would guarantee their numerical stabilities during long time computations.Furthermore, several analogous multi-symplectic algorithms are constructed as comparison. Numerical experiments for the unstable plane waves will show the advantages of the proposed algorithms over long time and verify the theoretical analysis.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.91130013Hunan Provincial Innovation Foundation under Grant No.CX2012B010+1 种基金the Innovation Fund of National University of Defense Technology under Grant No.B120205the Open Foundation of State Key Laboratory
文摘Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite difference method, Fourier pseudospectral method and wavelet collocation method for spatial discretizations, a series of high accurate conservative algorithms are presented. The proposed algorithms can preserve the corresponding discrete charge and energy conservation laws exactly, which would guarantee their numerical stabilities during long time computations.Furthermore, several analogous multi-symplectic algorithms are constructed as comparison. Numerical experiments for the unstable plane waves will show the advantages of the proposed algorithms over long time and verify the theoretical analysis.