期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
单标多组分HPLC定量分析法在川芎质量评价中的应用 被引量:10
1
作者 乔凤仙 蔡皓 +2 位作者 屠鹏飞 裴科 宋晓庆 《药学学报》 CAS CSCD 北大核心 2015年第6期749-754,共6页
采用高效液相色谱法,以丁烯基苯酞为内参物,建立川芎中1种酚酸类成分和5种苯酞类成分的单标多组分HPLC定量分析方法,并考察和验证该方法在川芎质量评价中应用的可行性和准确性。实验所用流动相为乙腈-0.2%甲酸水溶液,流速为1.0 m L·... 采用高效液相色谱法,以丁烯基苯酞为内参物,建立川芎中1种酚酸类成分和5种苯酞类成分的单标多组分HPLC定量分析方法,并考察和验证该方法在川芎质量评价中应用的可行性和准确性。实验所用流动相为乙腈-0.2%甲酸水溶液,流速为1.0 m L·min-1,柱温30℃,检测波长分别为252 nm(阿魏酸、藁本内酯、丁烯基苯酞)和266 nm(洋川芎内酯I、洋川芎内酯A、阿魏酸松柏酯),进样量20μL,梯度洗脱。结果显示,单标多组分HPLC定量分析法计算所得值与外标法实测值之间无显著性差异,RSD值均小于5%;相对校正因子的耐用性较好,色谱条件改变后,相对校正因子变化的RSD值均小于5%。所建立的单标多组分HPLC定量分析法可准确地用于中药川芎的多指标同步质量控制。 展开更多
关键词 单标多组分HPLC定量分析 川芎 不同类型成分 同时含量测定
原文传递
利用全内反射法测量猪肝脏和猪大肠黏膜组织的折射率和消光系数
2
作者 陈浩 邓志超 《生物医学工程与临床》 CAS 2015年第5期468-471,共4页
目的通过猪肝脏、大肠获得生物组织的基本光学参数折射率和消光系数。方法健康家猪1只,雄性,猪龄12个月,体质量约50 kg。利用导数全内反射法、反射曲线的单参数拟合法及多组分分析法的综合方法获得猪肝脏和猪大肠黏膜组织的折射率和消... 目的通过猪肝脏、大肠获得生物组织的基本光学参数折射率和消光系数。方法健康家猪1只,雄性,猪龄12个月,体质量约50 kg。利用导数全内反射法、反射曲线的单参数拟合法及多组分分析法的综合方法获得猪肝脏和猪大肠黏膜组织的折射率和消光系数。结果测得的肝脏外表面(被膜)折射率为1.393;通过单参数拟合得到的折射率的虚部(对应于消光系数)为k=0.002 6,拟合度为0.994。测量的肝组织内部折射率为1.383;利用单参数拟合法得到的折射率虚部(对应于消光系数)为k=0.005 6,拟合度为0.974。未经处理的猪大肠黏膜组织出现2个导数峰;导数曲线峰1位于52.31°,对应折射率为1.371,导数曲线峰2位于57.11°,对应折射率为1.455,刮去了表面的脂肪层的大肠黏膜组织折射率为1.371;利用单参数拟合法得到的消光系数k=0.004 4,拟合度为0.963。结论得到的结果为生物组织的光学性质研究和应用提供了可靠的数据。 展开更多
关键词 生物组织 肝脏 大肠黏膜 折射率 消光系数 导数全内反射 单参数拟合 多组分分析法
下载PDF
Spectroscopic Multicomponent Analysis Using Multi-objective Optimization for Variable Selection 被引量:1
3
作者 Anderson da Silva Soares Telma Woerle de Lima +3 位作者 Daniel Vitor de LuPcena Rogerio Lopes Salvini GustavoTeodoro Laureano Clarimar Jose Coelho 《Computer Technology and Application》 2013年第9期466-475,共10页
The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. The... The multiple determination tasks of chemical properties are a classical problem in analytical chemistry. The major problem is concerned in to find the best subset of variables that better represents the compounds. These variables are obtained by a spectrophotometer device. This device measures hundreds of correlated variables related with physicocbemical properties and that can be used to estimate the component of interest. The problem is the selection of a subset of informative and uncorrelated variables that help the minimization of prediction error. Classical algorithms select a subset of variables for each compound considered. In this work we propose the use of the SPEA-II (strength Pareto evolutionary algorithm II). We would like to show that the variable selection algorithm can selected just one subset used for multiple determinations using multiple linear regressions. For the case study is used wheat data obtained by NIR (near-infrared spectroscopy) spectrometry where the objective is the determination of a variable subgroup with information about E protein content (%), test weight (Kg/HI), WKT (wheat kernel texture) (%) and farinograph water absorption (%). The results of traditional techniques of multivariate calibration as the SPA (successive projections algorithm), PLS (partial least square) and mono-objective genetic algorithm are presents for comparisons. For NIR spectral analysis of protein concentration on wheat, the number of variables selected from 775 spectral variables was reduced for just 10 in the SPEA-II algorithm. The prediction error decreased from 0.2 in the classical methods to 0.09 in proposed approach, a reduction of 37%. The model using variables selected by SPEA-II had better prediction performance than classical algorithms and full-spectrum partial least-squares. 展开更多
关键词 Multi-objective algorithms variable selection linear regression.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部