Porous Ti for the application in clinic orthopaedics field was manufactured by powder metallurgy technique using polymethyl methacrylate as the space holder under different sintering conditions.The final morphological...Porous Ti for the application in clinic orthopaedics field was manufactured by powder metallurgy technique using polymethyl methacrylate as the space holder under different sintering conditions.The final morphological features and mechanical properties were described.The results show that the increase of sintering temperature and time leads to improved grain size of porous Ti ligament and decreased pore size,with a concomitant increase of tensile strength and elastic modulus.The microstructure and mechanical properties of solid Ti depend more on the sintering temperature and time than those of porous Ti.The relative contributions of these mechanisms of porous Ti vary with the initial microstructure and oxygen content.展开更多
Based on the finite volume method and the enthalpy-porous model the solid-liquid phase change of sodium in the combined wick is numerically studied.The one-temperature model is used since the thermal conductivity of s...Based on the finite volume method and the enthalpy-porous model the solid-liquid phase change of sodium in the combined wick is numerically studied.The one-temperature model is used since the thermal conductivity of sodium is close to that of the combined wick materials.The non-Darcy law and natural convection in the melting process are taken into account.The results show that a thin metal fiber felt in the combined wick can result in a faster melting rate of the sodium and a shorter time for the molten sodium to reach the maximum velocity which can shorten the time for the high-temperature heat pipe startup.A thick metal fiber felt in the combined wick can result in a uniform temperature distribution in the vertical heating wall and a small wall temperature difference which can reduce the possibility of an overheat spot.展开更多
The evolution of nanoporous structure with dealloying condition was investigated, thus, the mechanism of porous structure evolution was uncovered. The Gasar Cu-Mn alloy was dealloyed by room and elevated temperature c...The evolution of nanoporous structure with dealloying condition was investigated, thus, the mechanism of porous structure evolution was uncovered. The Gasar Cu-Mn alloy was dealloyed by room and elevated temperature chemical corrosion, low and high current level electrochemical corrosion, four types of porous structures, including uneven corrosion pits, hybrid porous, haystack type and bicontinuous model were prepared by chemically and electrochemically dealloying the porous Cu-34.6%Mn alloy made by the Gasar process. Then, the surface diffusion coefficient(DS) and the diffusion frequency(kD) of Cu atom, as well as the dissolution frequency(kE) of Mn atom were calculated with dealloying condition. The dealloyed morphologies for room temperature chemical corrosion and low current level electrochemical corrosion were similar due to the same DS. While the dealloyed structures changed from bulk hybrid porous structure to bicontinuous porous film with decreasing kD/kE.展开更多
The development of gold and cobalt-copper-nickel deposits in Kamchatka threatens the loss of biodiversity in spawning rivers and lakes and has negative effects on coastal ecosystems. To reduce pollution by mining wast...The development of gold and cobalt-copper-nickel deposits in Kamchatka threatens the loss of biodiversity in spawning rivers and lakes and has negative effects on coastal ecosystems. To reduce pollution by mining wastes, filters with dried marine alga Saccharina bongardiana in combination with zeolite and pumice are recommended. Combined Saccharina-based sorbents remove heavy metal ions more effectively, increasing adsorption capacity by five times compared to mineral (pumice) sorhents. As a result of desorption, a tenfold increase of the solution concentration is reached after the first sorption cycle. Valuable elements (Ni, Co, Cu etc.) can then be extracted from concentrates by any known method. It increases economic efficiency of the mining industry due to recycling of non-ferrous metals. Saccharina-based sorbents can be also utilized for purification of polluted natural waters. It may serve as environmental protection measure and provide for ecological safety of the unique natural environment of Kamchatka and its bioresources.展开更多
Nano-sized silica-alumina particles were in-situ synthesized in supersolubilizing reverse micellae.Both the most probable pore diameters and the particle sizes were distributed in nano-scale SiO2-Al2O3 particulates.Th...Nano-sized silica-alumina particles were in-situ synthesized in supersolubilizing reverse micellae.Both the most probable pore diameters and the particle sizes were distributed in nano-scale SiO2-Al2O3 particulates.The influence of SiO2/Al2O3 mass ratio and the surfactant content on the particle size and morphology,pore structure,and acidity was characterized by the low temperature nitrogen adsorption/desorption (BET),SEM,TEM and NH3-TPD methods.The test results indicated that the most probable pore diameter of SiO2-Al2O3 nanoparticles was around 10 nm,the specific surface area was about 223-286 m2 /g,the pore volumes were about 0.48-0.63 cm 3 /g,and the particle sizes of porous SiO2-Al2O3 calcined at 550 ℃ were distributed always in the range between 10 nm to 50 nm.The calcined SiO2-Al2O3 nano-powders showed their acidity being stronger than the porous γ-Al2O3 support.展开更多
Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided p...Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.展开更多
This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) be...This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.展开更多
Biomedical applications of porous calcium car- bonate (CaCO3) microspheres have been mainly restricted by their aqueous instability and low remineralization rate. To overcome these obstacles, a novel symmetry-breaki...Biomedical applications of porous calcium car- bonate (CaCO3) microspheres have been mainly restricted by their aqueous instability and low remineralization rate. To overcome these obstacles, a novel symmetry-breaking assembled porous calcite microsphere (PCMS) was con- structed in an ethanol/water mixed system using a two-step vapor-diffusion/aging crystallization strategy. In contrast to the conventional additive-induced crystallization method, the present strategy was performed under mild conditions and was free from any foreign additives, thus avoiding the potential contamination of the final product. Meanwhile, the prepared PCMSs were characterized by their highly uniform spherical morphology and large open pores, which are fa- vorable for large protein delivery. An antimicrobial study of immunoglobulin Y (IgY)-loaded PCMSs revealed excellent antimicrobial activity against Streptococcus mutans. More importantly, they showed surprisingly rapid transformation to bone minerals in physiological medium. Evaluation of the in vitro efficacy of PCMSs in dentinal tubule occlusion demonstrated their powerful potential to serve as a catalyst in the repair of dental hard tissue. Therefore, the developed PCMSs show great promise as multifunctional biomaterials for dental treatment applications.展开更多
Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and...Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and chemical vapor deposition of carbon in the cylindrical pores of AAO. Here we show that template-synthesized CNTs can be fabricated as well-aligned nanoporous CNTs membrane, which can be directly used as an electron field emitter. A low threshold electric field of 2-4 V/μm and maximum emission current density of ~12 mA/cm2 are observed. The results also show that the electron emission current is a function of the applied electrical field and the Fowler-Nordheim (F-N) plot almost follows a linear relationship which indicates a Fowler-Nordheim tunneling mechanism, and the field enhancement factor estimated is about 1100-7500. The simple and convenient approach should be significant for the development of nanotube devices integrated into field emission displays (FEDs) technology.展开更多
In this review a series of organic-based open porous networks are discussed, in which hydrogen bonds play an important role in network formation. Using these open networks as molecular templates: 1) a wealth of functi...In this review a series of organic-based open porous networks are discussed, in which hydrogen bonds play an important role in network formation. Using these open networks as molecular templates: 1) a wealth of functional guest species can be immo- bilized; 2) fullerene molecules can be separated and recognized; 3) photoisomerization reactions can be observed by STM; 4) 1D molecular arrays can be constructed; and 5) heterogeneous bilayer structures can be formed. It is envisioned that these su- pramolecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective ca- talysis, molecular recognition and host-guest supramolecular chemistry.展开更多
Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previou...Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previously been produced from a three-dimensional(3D)reduced graphene oxide(r-GO)hydrogel by evaporation-induced drying.Here the mechanism of such a network shrinkage in r-GO hydrogel is specifically illustrated by the use of water and 1,4-dioxane,which have a sole difference in surface tension.As a result,the surface tension of the evaporating solvent determines the capillary forces in the nanochannels,which causes shrinkage of the r-GO network.More promisingly,the selection of a solvent with a known surface tension can precisely tune the microstructure associated with the density and porosity of the resulting porous carbon,rendering the porous carbon materials great potential in practical devices with high volumetric performance.展开更多
The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient compos...The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient composition distribution were discussed. The polymer blend nanorods were prepared by infiltrating the polymer blends into nanopores of anodic aluminum oxide (AAO) templates via capillary action. Their morphology was investigated by micro-Fourier transform infrared spectroscopy (micro-FTIR) and nano-thermal analysis (nano-TA) with spatial resolution. The composition gradient of polymer blends in the nanopores is governed by the difference of viscosity and miscibility between the two polymers in the blends and the pore diameter. The capillary wetting of porous AAO templates by polymer blends offers a unique method to fabricate functional nanostructured materials with gradient composition distribution for the potential application to nanodevices.展开更多
Porous silicon(PSi)was applied as a supporting substrate for stepwise covalent derivatization of undecylenic acid, N-hydroxysuccinimidyl ester(NHS-ester)and nitrilotriacetic acid(NTA).By taking the advantages of porou...Porous silicon(PSi)was applied as a supporting substrate for stepwise covalent derivatization of undecylenic acid, N-hydroxysuccinimidyl ester(NHS-ester)and nitrilotriacetic acid(NTA).By taking the advantages of porous silicon as a supporting matrix such as high surface area to volume ratio,infrared transparency,porous semiconductors for laser desorption/ionization mass spectroscopy,and low fluorescence background,a multi-mode detection biochip prototype can be realized. We prepared such a protein microarray by spotting NTA microarray dots on NHS-ester derivatized PSi,converting the rest of chip area into poly(ethylene glycol)background,loading NiII,and finally affinity-binding histidine-tagged(His-tagged)proteins.With the multi-mode analyses of infrared spectroscopy,X-ray photoelectron spectroscopy(XPS),atomic force microscopy(AFM),matrix-assisted laser desorption/ionization mass spectroscopy(MALDI-MS),and fluorescence scanning,two example proteins,His-tagged thioredoxin-urodilatin and His-tagged aprotinin,were well qualified and quantified.展开更多
基金Project(L2014176)supported by the Education Office of Liaoning Province,China
文摘Porous Ti for the application in clinic orthopaedics field was manufactured by powder metallurgy technique using polymethyl methacrylate as the space holder under different sintering conditions.The final morphological features and mechanical properties were described.The results show that the increase of sintering temperature and time leads to improved grain size of porous Ti ligament and decreased pore size,with a concomitant increase of tensile strength and elastic modulus.The microstructure and mechanical properties of solid Ti depend more on the sintering temperature and time than those of porous Ti.The relative contributions of these mechanisms of porous Ti vary with the initial microstructure and oxygen content.
基金The National Natural Science Foundation of China(No.51076062)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ12_0421)
文摘Based on the finite volume method and the enthalpy-porous model the solid-liquid phase change of sodium in the combined wick is numerically studied.The one-temperature model is used since the thermal conductivity of sodium is close to that of the combined wick materials.The non-Darcy law and natural convection in the melting process are taken into account.The results show that a thin metal fiber felt in the combined wick can result in a faster melting rate of the sodium and a shorter time for the molten sodium to reach the maximum velocity which can shorten the time for the high-temperature heat pipe startup.A thick metal fiber felt in the combined wick can result in a uniform temperature distribution in the vertical heating wall and a small wall temperature difference which can reduce the possibility of an overheat spot.
基金Project(51371104)supported by the National Natural Science Foundation of China
文摘The evolution of nanoporous structure with dealloying condition was investigated, thus, the mechanism of porous structure evolution was uncovered. The Gasar Cu-Mn alloy was dealloyed by room and elevated temperature chemical corrosion, low and high current level electrochemical corrosion, four types of porous structures, including uneven corrosion pits, hybrid porous, haystack type and bicontinuous model were prepared by chemically and electrochemically dealloying the porous Cu-34.6%Mn alloy made by the Gasar process. Then, the surface diffusion coefficient(DS) and the diffusion frequency(kD) of Cu atom, as well as the dissolution frequency(kE) of Mn atom were calculated with dealloying condition. The dealloyed morphologies for room temperature chemical corrosion and low current level electrochemical corrosion were similar due to the same DS. While the dealloyed structures changed from bulk hybrid porous structure to bicontinuous porous film with decreasing kD/kE.
文摘The development of gold and cobalt-copper-nickel deposits in Kamchatka threatens the loss of biodiversity in spawning rivers and lakes and has negative effects on coastal ecosystems. To reduce pollution by mining wastes, filters with dried marine alga Saccharina bongardiana in combination with zeolite and pumice are recommended. Combined Saccharina-based sorbents remove heavy metal ions more effectively, increasing adsorption capacity by five times compared to mineral (pumice) sorhents. As a result of desorption, a tenfold increase of the solution concentration is reached after the first sorption cycle. Valuable elements (Ni, Co, Cu etc.) can then be extracted from concentrates by any known method. It increases economic efficiency of the mining industry due to recycling of non-ferrous metals. Saccharina-based sorbents can be also utilized for purification of polluted natural waters. It may serve as environmental protection measure and provide for ecological safety of the unique natural environment of Kamchatka and its bioresources.
基金the financial support of Liaoning Province National Science Fund (No.20072009)
文摘Nano-sized silica-alumina particles were in-situ synthesized in supersolubilizing reverse micellae.Both the most probable pore diameters and the particle sizes were distributed in nano-scale SiO2-Al2O3 particulates.The influence of SiO2/Al2O3 mass ratio and the surfactant content on the particle size and morphology,pore structure,and acidity was characterized by the low temperature nitrogen adsorption/desorption (BET),SEM,TEM and NH3-TPD methods.The test results indicated that the most probable pore diameter of SiO2-Al2O3 nanoparticles was around 10 nm,the specific surface area was about 223-286 m2 /g,the pore volumes were about 0.48-0.63 cm 3 /g,and the particle sizes of porous SiO2-Al2O3 calcined at 550 ℃ were distributed always in the range between 10 nm to 50 nm.The calcined SiO2-Al2O3 nano-powders showed their acidity being stronger than the porous γ-Al2O3 support.
基金Project(2011DFB70230)supported by State International Cooperation Program of ChinaProject(N110403003)supported by Basic Research Foundation of Education Ministry of China
文摘Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.
文摘This research aimed to combine 3 cell and tissue culture technologies to obtain mechanistic insights of cells in porous scaffolds. When cultivated on 2D (2-dimensional) surfaces, HDFs (human dermal fibroblasts) behaved individually and had no strict requirement on seeding density for proliferation; while HaCat cells relied heavily on initial densities for proliferation and colony formation, which was facilitated when co-cultured with HDFs. Experiments using a 3D CCIS (3-dimensional cell culture and imaging system) indicated that HDFs colonised openpores of varying sizes (125-420 ~tm) on modular substrates via bridge structures; while HaCat cells formed aperture structures and only colonised small pores (125 txm). When co-cultured, HDFs not only facilitated HaCat attachment on the substrates, but also coordinated with HaCat cells to colonise open pores of varying sizes via bridge and aperture structures. Based on these observations, a 2-stage strategy for the culture of HDFs and HaCat cells on porous scaffolds was proposed and applied successfully on a cellulosic scaffold. This research demonstrated that cell colonisation in scaffolds was dependent on multiple factors; while the integrated 2D&3D culture technologies and the 3D CCIS was an effective and efficient approach to obtain mechanistic insights of their influences on tissue regeneration.
基金supported by the National Natural Science Foundation ofChina (51402329 and 81500806)the Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201404)Shanghai Excellent Academic Leaders Program (14XD1403800)
文摘Biomedical applications of porous calcium car- bonate (CaCO3) microspheres have been mainly restricted by their aqueous instability and low remineralization rate. To overcome these obstacles, a novel symmetry-breaking assembled porous calcite microsphere (PCMS) was con- structed in an ethanol/water mixed system using a two-step vapor-diffusion/aging crystallization strategy. In contrast to the conventional additive-induced crystallization method, the present strategy was performed under mild conditions and was free from any foreign additives, thus avoiding the potential contamination of the final product. Meanwhile, the prepared PCMSs were characterized by their highly uniform spherical morphology and large open pores, which are fa- vorable for large protein delivery. An antimicrobial study of immunoglobulin Y (IgY)-loaded PCMSs revealed excellent antimicrobial activity against Streptococcus mutans. More importantly, they showed surprisingly rapid transformation to bone minerals in physiological medium. Evaluation of the in vitro efficacy of PCMSs in dentinal tubule occlusion demonstrated their powerful potential to serve as a catalyst in the repair of dental hard tissue. Therefore, the developed PCMSs show great promise as multifunctional biomaterials for dental treatment applications.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 69890220) .
文摘Ensembles of aligned and monodispersed carbon nanotubes (CNTs)can be prepared by templating method which involves fabrication of porous anodic aluminum oxide (AAO) template, control of catalytic iron particle size and chemical vapor deposition of carbon in the cylindrical pores of AAO. Here we show that template-synthesized CNTs can be fabricated as well-aligned nanoporous CNTs membrane, which can be directly used as an electron field emitter. A low threshold electric field of 2-4 V/μm and maximum emission current density of ~12 mA/cm2 are observed. The results also show that the electron emission current is a function of the applied electrical field and the Fowler-Nordheim (F-N) plot almost follows a linear relationship which indicates a Fowler-Nordheim tunneling mechanism, and the field enhancement factor estimated is about 1100-7500. The simple and convenient approach should be significant for the development of nanotube devices integrated into field emission displays (FEDs) technology.
文摘In this review a series of organic-based open porous networks are discussed, in which hydrogen bonds play an important role in network formation. Using these open networks as molecular templates: 1) a wealth of functional guest species can be immo- bilized; 2) fullerene molecules can be separated and recognized; 3) photoisomerization reactions can be observed by STM; 4) 1D molecular arrays can be constructed; and 5) heterogeneous bilayer structures can be formed. It is envisioned that these su- pramolecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective ca- talysis, molecular recognition and host-guest supramolecular chemistry.
基金This work was supported by the National Natural Science Fund for the Distinguished Young Scholars,China(51525204)the National Natural Science Foundation of China(51702229 and 51872195)the CAS Key Laboratory of Carbon Materials(KLCM KFJJ1704).
文摘Conventional carbon materials cannot combine high density and high porosity,which are required in many applications,typically for energy storage under a limited space.A novel highly dense yet porous carbon has previously been produced from a three-dimensional(3D)reduced graphene oxide(r-GO)hydrogel by evaporation-induced drying.Here the mechanism of such a network shrinkage in r-GO hydrogel is specifically illustrated by the use of water and 1,4-dioxane,which have a sole difference in surface tension.As a result,the surface tension of the evaporating solvent determines the capillary forces in the nanochannels,which causes shrinkage of the r-GO network.More promisingly,the selection of a solvent with a known surface tension can precisely tune the microstructure associated with the density and porosity of the resulting porous carbon,rendering the porous carbon materials great potential in practical devices with high volumetric performance.
基金supported by a Grant-in-Aid for the Global COE Program "Science for Future Molecular Systems" from the Ministry of Education, Culture, Science, Sports and Technology of JapanZ.S. thanks the National Natural Science Foundation of China (50921062) for support
文摘The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient composition distribution were discussed. The polymer blend nanorods were prepared by infiltrating the polymer blends into nanopores of anodic aluminum oxide (AAO) templates via capillary action. Their morphology was investigated by micro-Fourier transform infrared spectroscopy (micro-FTIR) and nano-thermal analysis (nano-TA) with spatial resolution. The composition gradient of polymer blends in the nanopores is governed by the difference of viscosity and miscibility between the two polymers in the blends and the pore diameter. The capillary wetting of porous AAO templates by polymer blends offers a unique method to fabricate functional nanostructured materials with gradient composition distribution for the potential application to nanodevices.
基金the financial support of the National Basic Research Program of China(2007CB925101)the National Natural Science Foundation of China(20721002&20827001)an open research fund of State Key Laboratory of Bioelectronics,Southeast University
文摘Porous silicon(PSi)was applied as a supporting substrate for stepwise covalent derivatization of undecylenic acid, N-hydroxysuccinimidyl ester(NHS-ester)and nitrilotriacetic acid(NTA).By taking the advantages of porous silicon as a supporting matrix such as high surface area to volume ratio,infrared transparency,porous semiconductors for laser desorption/ionization mass spectroscopy,and low fluorescence background,a multi-mode detection biochip prototype can be realized. We prepared such a protein microarray by spotting NTA microarray dots on NHS-ester derivatized PSi,converting the rest of chip area into poly(ethylene glycol)background,loading NiII,and finally affinity-binding histidine-tagged(His-tagged)proteins.With the multi-mode analyses of infrared spectroscopy,X-ray photoelectron spectroscopy(XPS),atomic force microscopy(AFM),matrix-assisted laser desorption/ionization mass spectroscopy(MALDI-MS),and fluorescence scanning,two example proteins,His-tagged thioredoxin-urodilatin and His-tagged aprotinin,were well qualified and quantified.