The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of tra...The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.展开更多
A simple and selective method for the separation of Be(Ⅱ) was developed using poly[dibenzo-18-crown-6] as a stationary phase in column chromatography. The study was carried out in L-arginine medium. 1.0-8.0 M HCl a...A simple and selective method for the separation of Be(Ⅱ) was developed using poly[dibenzo-18-crown-6] as a stationary phase in column chromatography. The study was carried out in L-arginine medium. 1.0-8.0 M HCl and CH3COOH, 0.5-8.0 M HBr, HClO4 and H2SO4, 0.2-1.0 M EDTA and 0.02-0.12 M ammonium oxalate were found to be an efficient eluents for Be(Ⅱ). The capacity of polymer was 0.554-0.01 mmol/g of crown polymer. The tolerance limit of various cations and anions were reported. Be(Ⅱ) was quantitatively separated from Mg(Ⅱ), Ca(Ⅱ), Sr(Ⅱ) and Ba(Ⅱ). The selective separation of Be(Ⅱ) was possible from multicomponent mixtures. The method was extended to determine Be(Ⅱ) from geological samples. Method was simple, rapid and selective having good reproducibility (approximately4-2%).展开更多
The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have dete...The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.展开更多
Multi-component mixture(MCM) is a complicated chemical system that contains a great deal of mixture rays with various mixture ratios, and each ray includes many mixtures with different concentration levels.Currently, ...Multi-component mixture(MCM) is a complicated chemical system that contains a great deal of mixture rays with various mixture ratios, and each ray includes many mixtures with different concentration levels.Currently, in combined toxicity field, almost all studies on MCM focus on the mixtures designed by the equivalenteffect concentration ratio(EECR) procedure. However, the EECR mixtures cannot represent the whole mixture system because the EECR mixtures are located on one mixture ray in concentration space formed by multiple components. In our view, some optimal experimental design such as the uniform design(UD) should be used to effectively select many representative mixture rays from the MCM system,instead of single EECR ray. The uniform design ray(UDray) integrating UD idea with fixed-ratio ray design can systematically and comprehensively measure the combined toxicity changes in the MCM system. This review introduces the operation method, construction of uniform table and corresponding usable table, and some cases of application of the UD-ray to help readers easily use UD-ray in their MCM toxicity assessment.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52001120)the Fundamental Research Funds for the Central Universities,China(No.531118010450)+2 种基金the Hundred Talent Program of Hunan Province,China(No.2021-Z09)supported by the Postdoctoral Science Foundation of China(No.2021M701135)the Excellent Postdoctoral Innovative Talents Program of Hunan Province,China(No.2021RC2043)。
基金Supported by the National Natural Science Foundation of China (20776118), Science & Technology Bureau of Xi'an [CXY09019 (1)], Innovation Foundation for Graduated Student of Northwest University (08YJC21), Shaanxi Research Center of Engineering Technology for Clean Coal Conversion (2008ZDGC-13).
文摘The Intalox metal tower packing was used to simulate an industrial relevant extractive distillation column for purifying azeotropic multicomponent mixture.In order to explain the inconsistencies in the modeling of transfer process in nonideal multicomponent distillation column,a method was developed with equilibrium stage models(EQ)and non-equilibrium model(NEQ)incorporated with Maxwell-Stefan diffusion equations in the framework of AspenONE simulator.Dortmund Modified UNIFAC(UNIFAC-DMD)thermodynamic model was employed to estimate activity coefficients.In addition,to understand the reason for the diffusion against driving force and the different results by EQ and NEQ models,explicit investigations were made on diffusion coefficients, component Murphree efficiency and mass transfer coefficients.The results provide valuable information for basic design and applications associated with extractive distillation.
文摘A simple and selective method for the separation of Be(Ⅱ) was developed using poly[dibenzo-18-crown-6] as a stationary phase in column chromatography. The study was carried out in L-arginine medium. 1.0-8.0 M HCl and CH3COOH, 0.5-8.0 M HBr, HClO4 and H2SO4, 0.2-1.0 M EDTA and 0.02-0.12 M ammonium oxalate were found to be an efficient eluents for Be(Ⅱ). The capacity of polymer was 0.554-0.01 mmol/g of crown polymer. The tolerance limit of various cations and anions were reported. Be(Ⅱ) was quantitatively separated from Mg(Ⅱ), Ca(Ⅱ), Sr(Ⅱ) and Ba(Ⅱ). The selective separation of Be(Ⅱ) was possible from multicomponent mixtures. The method was extended to determine Be(Ⅱ) from geological samples. Method was simple, rapid and selective having good reproducibility (approximately4-2%).
基金The financial supports from the National Natural Science Foundation of China (No.50874088)the Changjiang Scholars and Innovative Research Team in University (No.IRT0856)
文摘The explosive gases CO and C2H4, released mainly flammable gases during the process of coal self-ignition, are of the most important ingredients of the multi-component gases in goal areas, along with CH4. We have determined some of the parame- ters of explosive properties of the one-component gases CH4, CO and C2H4 using an explosive trial device of polybasic explosive gas mixtures and emphasized particularly the effect on the limits of explosive concentration of the binary explosive mixed gases CH4+CO, CH4+C2H4, as a function of the amount of CO, C2H4 and inert flame resisting gases (N2, CO2). The experimental results show that the effect of inert gases on the explosive limits of mixed gases, given the property of explosive gas, is obvious: the inert gases (N2, CO2) possess some inhibitory effects on the explosion of the multi-component explosive gas mixtures. The results will provide some experimental support to suppress the occurrence of the gas explosions in goaf areas and provide some directions for designing explosion-proof electric equipment and fire arresters.
基金supported by the National Natural Science Foundation of China(2117709721207002)Specialized Research Fund for the Doctoral Program of Higher Education(20120072110052)
文摘Multi-component mixture(MCM) is a complicated chemical system that contains a great deal of mixture rays with various mixture ratios, and each ray includes many mixtures with different concentration levels.Currently, in combined toxicity field, almost all studies on MCM focus on the mixtures designed by the equivalenteffect concentration ratio(EECR) procedure. However, the EECR mixtures cannot represent the whole mixture system because the EECR mixtures are located on one mixture ray in concentration space formed by multiple components. In our view, some optimal experimental design such as the uniform design(UD) should be used to effectively select many representative mixture rays from the MCM system,instead of single EECR ray. The uniform design ray(UDray) integrating UD idea with fixed-ratio ray design can systematically and comprehensively measure the combined toxicity changes in the MCM system. This review introduces the operation method, construction of uniform table and corresponding usable table, and some cases of application of the UD-ray to help readers easily use UD-ray in their MCM toxicity assessment.