期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化及多结构估计的ASIFT特征提取算法
1
作者 曹雪莲 陈水利 《集美大学学报(自然科学版)》 CAS 2013年第2期139-145,共7页
提出一种基于粒子群优化及多结构估计的ASIFT特征提取算法.首先用粒子群优化算法对ASIFT的采样进行优化得到大量的特征匹配点对,在此基础上再使用Multi-GS多结构估计算法进行多结构提取并去除错误的匹配点对,最终得到大量而精确的特征... 提出一种基于粒子群优化及多结构估计的ASIFT特征提取算法.首先用粒子群优化算法对ASIFT的采样进行优化得到大量的特征匹配点对,在此基础上再使用Multi-GS多结构估计算法进行多结构提取并去除错误的匹配点对,最终得到大量而精确的特征匹配对.并用实例加以验证其有效性. 展开更多
关键词 图像局部特征提取 ASIFT算法 粒子群优化 多结构估计 Multi-GS算法
下载PDF
卫星网联合定轨的多结构非线性参数建模及精度仿真 被引量:1
2
作者 余红梅 赵德勇 《系统仿真技术》 2011年第2期89-94,共6页
基于双星定位系统的多近地卫星的联合定轨,实际上属于多结构多参数非线性回归模型及其参数估计方法研究的范畴。据此建立了基于双星定位系统的近地卫星网联合定轨的多结构非线性回归模型,通过引入加权因子讨论定轨模型的加权与参数估计... 基于双星定位系统的多近地卫星的联合定轨,实际上属于多结构多参数非线性回归模型及其参数估计方法研究的范畴。据此建立了基于双星定位系统的近地卫星网联合定轨的多结构非线性回归模型,通过引入加权因子讨论定轨模型的加权与参数估计问题,设计了卫星网联合定轨的多结构非线性回归模型的最优加权算法,并进行了两类仿真实验。仿真计算结果表明,基于最优加权的多结构非线性联合定轨建模方法及实现算法能够有效改善联合定轨精度,从实践角度证明了该建模方法的应用价值。 展开更多
关键词 联合定轨 多结构非线性参数估计 数值融合算法 精度仿真
下载PDF
Application of artificial neural networks and multivariate statistics to estimate UCS using textural characteristics 被引量:14
3
作者 Amin Manouchehrian Mostafa Sharifzadeh Rasoul Hamidzadeh Moghadam 《International Journal of Mining Science and Technology》 SCIE EI 2012年第2期229-236,共8页
Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing... Before any rock engineering project,mechanical parameters of rocks such as uniaxial compressive strength and young modulus of intact rock get measured using laboratory or in-situ tests,but in some situations preparing the required specimens is impossible.By this time,several models have been established to evaluate UCS and E from rock substantial properties.Artificial neural networks are powerful tools which are employed to establish predictive models and results have shown the priority of this technique compared to classic statistical techniques.In this paper,ANN and multivariate statistical models considering rock textural characteristics have been established to estimate UCS of rock and to validate the responses of the established models,they were compared with laboratory results.For this purpose a data set for 44 samples of sandstone was prepared and for each sample some textural characteristics such as void,mineral content and grain size as well as UCS were determined.To select the best predictors as inputs of the UCS models,this data set was subjected to statistical analyses comprising basic descriptive statistics,bivariate correlation,curve fitting and principal component analyses.Results of such analyses have shown that void,ferroan calcitic cement,argillaceous cement and mica percentage have the most effect on USC.Two predictive models for UCS were developed using these variables by ANN and linear multivariate regression.Results have shown that by using simple textural characteristics such as mineral content,cement type and void,strength of studied sandstone can be estimated with acceptable accuracy.ANN and multivariate statistical UCS models,revealed responses with 0.87 and 0.76 regressions,respectively which proves higher potential of ANN model for predicting UCS compared to classic statistical models. 展开更多
关键词 Textural characteristicsUniaxial compressive strengthPredictive modelsArtificial neural networksMultivariate statistics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部