期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
海南黎族民间音乐研究方法论初探 被引量:5
1
作者 赵京封 《海南大学学报(人文社会科学版)》 CSSCI 2008年第5期486-489,共4页
关于海南黎族民间音乐方面的研究,目前尚缺具有较高学术水准和科研价值的研究成果,尤其缺乏具有理性思辨色彩和独特创见的新兴课题,这已成为海南民族音乐学事业发展的瓶颈。笔者拟在海南黎族民间音乐研究现状的基础上,构建具有宏观的、... 关于海南黎族民间音乐方面的研究,目前尚缺具有较高学术水准和科研价值的研究成果,尤其缺乏具有理性思辨色彩和独特创见的新兴课题,这已成为海南民族音乐学事业发展的瓶颈。笔者拟在海南黎族民间音乐研究现状的基础上,构建具有宏观的、思辨性的方法论,对所涉及音乐事象所要采用的基本观点和思维准则等方面进行探讨,以形成多维视角下对海南黎族民间音乐进行分析和论证的方法论体系。 展开更多
关键词 研究方法论 黎族民间音乐 多维“取值” 交叉学科
下载PDF
Joint eigenvalue estimation by balanced simultaneous Schur decomposition
2
作者 付佗 高西奇 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期445-450,共6页
The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur d... The problem of joint eigenvalue estimation for the non-defective commuting set of matrices A is addressed. A procedure revealing the joint eigenstructure by simultaneous diagonalization of. A with simultaneous Schur decomposition (SSD) and balance procedure alternately is proposed for performance considerations and also for overcoming the convergence difficulties of previous methods based only on simultaneous Schur form and unitary transformations, it is shown that the SSD procedure can be well incorporated with the balancing algorithm in a pingpong manner, i. e., each optimizes a cost function and at the same time serves as an acceleration procedure for the other. Under mild assumptions, the convergence of the two cost functions alternately optimized, i. e., the norm of A and the norm of the left-lower part of A is proved. Numerical experiments are conducted in a multi-dimensional harmonic retrieval application and suggest that the presented method converges considerably faster than the methods based on only unitary transformation for matrices which are not near to normality. 展开更多
关键词 direction of arrival multi-dimensional harmonic retrieval joint eigenvalue simultaneous Schur decomposition balance algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部