The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain ...The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.展开更多
The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial alge...The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial algebra with different highest orders.展开更多
基金the National Natural Science Foundation of China(No.10571017)supported in part by the National Natural Science Foundation of China(No.60533020)supported in part by NSF DMS 0712744
文摘The numerical solution of large scale multi-dimensional convection diffusion equations often requires efficient parallel algorithms.In this work,we consider the extension of a recently proposed non-overlapping domain decomposition method for two dimensional time dependent convection diffusion equations with variable coefficients. By combining predictor-corrector technique,modified upwind differences with explicitimplicit coupling,the method under consideration provides intrinsic parallelism while maintaining good stability and accuracy.Moreover,for multi-dimensional problems, the method can be readily implemented on a multi-processor system and does not have the limitation on the choice of subdomains required by some other similar predictor-corrector or stabilized schemes.These properties of the method are demonstrated in this work through both rigorous mathematical analysis and numerical experiments.
基金Supported by the National Natural Science Foundation of China under Grant No.10975075Program for New Century Excellent Talents in University,and the Project-sponsored 5 by SRF for ROCS,SEM
文摘The polynomial algebra is a deformed su(2) algebra. Here, we use polynomial algebra az a method to solve a series of deformed oscillators. Thus, we find a series of physics systems corresponding with polynomial algebra with different highest orders.