期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多维数值型敏感属性数据的个性化隐私保护方法 被引量:19
1
作者 张梅舒 徐雅斌 《计算机应用》 CSCD 北大核心 2020年第2期491-496,共6页
为了解决多维数值型敏感属性数据隐私保护方法中存在的准标识符属性信息损失大,以及不能满足用户对数值型敏感属性重要性排序的个性化需求问题,提出一种基于聚类和加权多维桶分组(MSB)的个性化隐私保护方法。首先,根据准标识符的相似程... 为了解决多维数值型敏感属性数据隐私保护方法中存在的准标识符属性信息损失大,以及不能满足用户对数值型敏感属性重要性排序的个性化需求问题,提出一种基于聚类和加权多维桶分组(MSB)的个性化隐私保护方法。首先,根据准标识符的相似程度,将数据集划分成若干准标识符属性值相近的子集;然后,考虑到用户对敏感属性的敏感程度不同,将敏感程度和多维桶的桶容量用于计算加权选择度和构建加权多维桶;最后,依此对数据进行分组和匿名化处理。选用UCI的标准Adult数据集中的8个属性进行实验,并与基于聚类和多维桶的数据隐私保护方法MNSACM和基于聚类和加权多维桶分组的个性化隐私保护方法WMNSAPM进行对比。实验结果表明,所提方法整体较优,并且在减少信息损失和运行时间方面明显优于对比方法,提高了数据质量和运行效率。 展开更多
关键词 隐私保护 多维数值型敏感属性 聚类 匿名化 个性化
下载PDF
多维敏感k-匿名隐私保护模型 被引量:3
2
作者 傅鹤岗 曾凯 《计算机工程》 CAS CSCD 2012年第3期145-147,162,共4页
针对数据挖掘中私有信息的保护问题,提出一种多维敏感k-匿名隐私保护模型。将敏感属性泄露问题分为一般泄露、相似泄露、多维独立泄露、交叉泄露和多维混合数据泄露,在k-匿名的基础上,以聚类特性对多维敏感属性进行相似性标记,寻找匿名... 针对数据挖掘中私有信息的保护问题,提出一种多维敏感k-匿名隐私保护模型。将敏感属性泄露问题分为一般泄露、相似泄露、多维独立泄露、交叉泄露和多维混合数据泄露,在k-匿名的基础上,以聚类特性对多维敏感属性进行相似性标记,寻找匿名记录,计算剩余记录与已分组记录的相似性,泛化并发布满足匿名模型的数据集。实验结果表明,该模型适用于多维敏感数据,能防止隐私泄露,数据可用性较好。 展开更多
关键词 K-匿名 隐私保护 多维敏感属性 属性泄露 聚类 相似性
下载PDF
面向数据隐私差异的隐私保护数据发布方法 被引量:1
3
作者 俞艺涵 周大伟 +1 位作者 李洪成 吴晓平 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第9期57-63,共7页
针对关系型数据中多维敏感属性隐私差异所引起的隐私保护效用降低问题,提出了一种能有效表达多维敏感属性隐私差异的隐私保护数据发布方法.基于一种多维桶分组技术(MSB)对数据集的多维敏感属性隐私差异以及记录价值进行量化区分,给出记... 针对关系型数据中多维敏感属性隐私差异所引起的隐私保护效用降低问题,提出了一种能有效表达多维敏感属性隐私差异的隐私保护数据发布方法.基于一种多维桶分组技术(MSB)对数据集的多维敏感属性隐私差异以及记录价值进行量化区分,给出记录分组优先级参数的计算方法,进而可实现基于记录分组优先级参数多维桶记录分组(TPSB)算法的隐私保护数据发布.实验结果表明:在权重参数合理赋值条件下,该方法在保证数据发布效率的同时可有效提升数据发布的质量. 展开更多
关键词 隐私保护 数据发布 多维敏感属性 隐私差异 多维桶分组
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部