期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CNN-LSTM-AM神经网络的多维长序列物流需求预测
1
作者 朱毅丁 张云川 +1 位作者 马云峰 周志刚 《物流科技》 2024年第18期49-56,64,共9页
物流需求预测是物流管理中的关键环节,但是在现实生活中,物流需求可能受到诸如天气、经济状况、特殊事件等多方面因素的影响,这使得问题呈现出多维度、长序列的特征。随着深度学习和神经网络的发展,越来越多的研究开始尝试使用神经网络... 物流需求预测是物流管理中的关键环节,但是在现实生活中,物流需求可能受到诸如天气、经济状况、特殊事件等多方面因素的影响,这使得问题呈现出多维度、长序列的特征。随着深度学习和神经网络的发展,越来越多的研究开始尝试使用神经网络模型进行物流需求预测,但是单一的神经网络模型在处理多维度、长时间序列的预测任务时常常表现欠佳。由此文章提出了一种基于CNN-LSTM-AM的神经网络模型,用于多维长序列物流需求预测。通过消融实验与其他模型的对比,结果表明,其平均绝对误差(MAE)、均方根误差(RMSE)、决定系数(R2)均值分别为1.56、1.63和0.981,均优于其他6种神经网络模型,为物流企业提供了一个有效的参考来更好地规划资源和降低成本。 展开更多
关键词 多维物流需求预测 长时间序列 LSTM(长短时记忆)网络 CNN(卷积神经网络) 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部