The effect of land use on soil organic carbon (SOC) stocks and depth distribution of SOC was investigated in the Lake Victoria Crescent ago-ecological zone of Uganda. Soil samples were collected from six land use ty...The effect of land use on soil organic carbon (SOC) stocks and depth distribution of SOC was investigated in the Lake Victoria Crescent ago-ecological zone of Uganda. Soil samples were collected from six land use types at 0-30, 30-60 and 60-90 cm from profile pits dug in similar soils and slopes. Results indicated that SOC stocks significantly differed across the various land use systems. SOC also varied significantly by depth. The highest SOC and pH were recorded under natural forest-strict nature. Grassland had the lowest SOC but the highest bulk density (BD). Phosphorous (P) was the highest in banana-coffee systems and the lowest under tea plantations. The lowest values of pH and BD were found in highly disturbed natural forest. The upper layers of the soil (0-30 cm) stored higher amounts of SOC compared to other depths (30-60 cm and 60-90 cm). Land use therefore has a significant effect on SOC and other soil physical and chemical properties.展开更多
文摘The effect of land use on soil organic carbon (SOC) stocks and depth distribution of SOC was investigated in the Lake Victoria Crescent ago-ecological zone of Uganda. Soil samples were collected from six land use types at 0-30, 30-60 and 60-90 cm from profile pits dug in similar soils and slopes. Results indicated that SOC stocks significantly differed across the various land use systems. SOC also varied significantly by depth. The highest SOC and pH were recorded under natural forest-strict nature. Grassland had the lowest SOC but the highest bulk density (BD). Phosphorous (P) was the highest in banana-coffee systems and the lowest under tea plantations. The lowest values of pH and BD were found in highly disturbed natural forest. The upper layers of the soil (0-30 cm) stored higher amounts of SOC compared to other depths (30-60 cm and 60-90 cm). Land use therefore has a significant effect on SOC and other soil physical and chemical properties.