The generation of a perceptual map via three-way multidimensional scaling allows analysts to see the separation of objects in Euclidean space. The MDSvarext method incorporates the objects' confidence regions in this...The generation of a perceptual map via three-way multidimensional scaling allows analysts to see the separation of objects in Euclidean space. The MDSvarext method incorporates the objects' confidence regions in this analysis, allowing for statistical inference in the difference between objects, but the confidence regions that are generated are very large because of the inherent variability among the evaluators. One solution to this problem is cluster generation prior to the application of the MDSvarext method in order to obtain homogeneous subgroups and to achieve greater control of the variance. This work is relevant to studies of perception which usually evaluate the difference between objects or stimuli in the point of view of different people that judge this difference using several dimensions. This study investigated the possibility of using a K-means algorithm to generate subgroups before the MDSvarext method was applied, evaluating the process with two quality indicators, one Ex-Ante and one Ex-Post. The experiments were conducted based on simulation of judgment matrix of different objects in multiple dimensions being evaluated by several judges. In this experiment, the matrix used was a 10 objects, in 10 features, judged by 10 people. The results are promising as possible interpretations of the perceptual map and the indicators generated.展开更多
文摘The generation of a perceptual map via three-way multidimensional scaling allows analysts to see the separation of objects in Euclidean space. The MDSvarext method incorporates the objects' confidence regions in this analysis, allowing for statistical inference in the difference between objects, but the confidence regions that are generated are very large because of the inherent variability among the evaluators. One solution to this problem is cluster generation prior to the application of the MDSvarext method in order to obtain homogeneous subgroups and to achieve greater control of the variance. This work is relevant to studies of perception which usually evaluate the difference between objects or stimuli in the point of view of different people that judge this difference using several dimensions. This study investigated the possibility of using a K-means algorithm to generate subgroups before the MDSvarext method was applied, evaluating the process with two quality indicators, one Ex-Ante and one Ex-Post. The experiments were conducted based on simulation of judgment matrix of different objects in multiple dimensions being evaluated by several judges. In this experiment, the matrix used was a 10 objects, in 10 features, judged by 10 people. The results are promising as possible interpretations of the perceptual map and the indicators generated.