本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to...本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.展开更多
基金partly supported by National Natural Science Foundation of China and President Foundation of GUCAS.
文摘本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.