针对考虑综合需求响应和电能交互的冷热电联供多综合能源微网系统,提出一种基于博弈的多综合能源微网优化运行策略。首先,建立各微网运营商与用户之间的双层主从博弈模型,并利用Karush-Kuhn-Tucker(KKT)条件和强对偶定理将双层优化模型...针对考虑综合需求响应和电能交互的冷热电联供多综合能源微网系统,提出一种基于博弈的多综合能源微网优化运行策略。首先,建立各微网运营商与用户之间的双层主从博弈模型,并利用Karush-Kuhn-Tucker(KKT)条件和强对偶定理将双层优化模型转化为单层线性优化模型,以便于快速求解;其次,利用交替方向乘子法(alternating direction method of multipliers,ADMM)对合作联盟中各微网运营商进行分布式优化求解,以保护各微网运营商的信息隐私,针对含电能互济的微网运营商之间利益分配问题,提出基于Shapley值法的合作博弈运行策略;最后,通过算例仿真验证了所提模型和方法的有效性。展开更多
“双碳”背景下,多综合能源微网(integrated energy microgrid,IEM)系统优化运行过程中面临着协同管理、新能源出力随机波动、负荷功率不确定性以及信息隐私保护等诸多挑战。计及源荷不确定性,提出一种基于纳什谈判的多IEM系统两阶段博...“双碳”背景下,多综合能源微网(integrated energy microgrid,IEM)系统优化运行过程中面临着协同管理、新能源出力随机波动、负荷功率不确定性以及信息隐私保护等诸多挑战。计及源荷不确定性,提出一种基于纳什谈判的多IEM系统两阶段博弈策略。首先,针对源荷不确定性构建源荷不确定集合,建立多IEM系统的源-荷两阶段鲁棒优化调度模型;其次,充分挖掘IEM成员间的潜在合作关系,基于纳什谈判理论构建多IEM两阶段鲁棒博弈模型,并将原问题等效为多IEM系统效益最大化和支付效益最大化两个子问题,以保证多IEM系统合作收益的公平分配;最后,为保护各主体隐私,采用列约束生成算法结合交替方向乘子法(alternating direction multiplier method,ADMM)高效求解所构建的模型。算例结果表明,所提策略能够实现多IEM系统电、热资源的优化配置,系统总运行成本降低了5.16%,风光消纳率达到80%以上,并提高了系统应对不确定性风险的能力。展开更多
文摘针对考虑综合需求响应和电能交互的冷热电联供多综合能源微网系统,提出一种基于博弈的多综合能源微网优化运行策略。首先,建立各微网运营商与用户之间的双层主从博弈模型,并利用Karush-Kuhn-Tucker(KKT)条件和强对偶定理将双层优化模型转化为单层线性优化模型,以便于快速求解;其次,利用交替方向乘子法(alternating direction method of multipliers,ADMM)对合作联盟中各微网运营商进行分布式优化求解,以保护各微网运营商的信息隐私,针对含电能互济的微网运营商之间利益分配问题,提出基于Shapley值法的合作博弈运行策略;最后,通过算例仿真验证了所提模型和方法的有效性。
文摘“双碳”背景下,多综合能源微网(integrated energy microgrid,IEM)系统优化运行过程中面临着协同管理、新能源出力随机波动、负荷功率不确定性以及信息隐私保护等诸多挑战。计及源荷不确定性,提出一种基于纳什谈判的多IEM系统两阶段博弈策略。首先,针对源荷不确定性构建源荷不确定集合,建立多IEM系统的源-荷两阶段鲁棒优化调度模型;其次,充分挖掘IEM成员间的潜在合作关系,基于纳什谈判理论构建多IEM两阶段鲁棒博弈模型,并将原问题等效为多IEM系统效益最大化和支付效益最大化两个子问题,以保证多IEM系统合作收益的公平分配;最后,为保护各主体隐私,采用列约束生成算法结合交替方向乘子法(alternating direction multiplier method,ADMM)高效求解所构建的模型。算例结果表明,所提策略能够实现多IEM系统电、热资源的优化配置,系统总运行成本降低了5.16%,风光消纳率达到80%以上,并提高了系统应对不确定性风险的能力。