This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the ...This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.展开更多
基金Project supported by the UK EPSRC(No.EP/N005597/1)the H2020-MSCA-RISE-2015(No.690750)+1 种基金the National Natural Science Foundation of China(No.61728101)the U.S.National Science Foundation(Nos.CNS-1702808 and ECCS-1647198)
文摘This paper provides a comprehensive survey of the impact of the emerging communication technique, non-orthogonal multiple access (NOMA), on future wireless networks. Particularly, how the NOMA principle affects the design of the generation multiple access techniques is introduced first. Then the applications of NOMA to other advanced communication techniques, such as wireless caching, multiple-input multiple-output techniques, millimeter-wave communications, and cooperative relaying, are discussed. The impact of NOMA on communication systems beyond cellular networks is also illustrated, through the examples of digital TV, satellite communications, vehicular networks, and visible light communications. Finally, the study is concluded with a discussion of important research challenges and promising future directions in NOMA.