This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of mul...This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of multiple secondary Transmitter-Receiver (Tx-Rx) pairs. For most MU-OFDM systems, the Exc- lusive Subchannel Assignment (ESA) is an efficient resource allocation method. Noneth- eless, it is inappropriate for the network consi- dered in this paper, because subchannels shar- ing among secondary Tx-Rx pairs can further improve the system performance. We investi- gate the Weighted Sum Rate (WSR) maximi- zation problem under the Shared Subchannel Assignment (SSA), where each subchannel is shared by multiple secondary Tx-Rx pairs. With Lagrangian duality technique, we decompose the original resource allocation problem into sev- eral sub-problems on each subchannel and pro- pose a duality-based suhchannel sharing ap- proach. For practical realisation in the cogni- tive systems without central control entity, a distributed duality-based WSR maximization scheme is presented. Simulation results mani- fest that the proposed scheme achieves sig- nificantly better performance than ESA duality scheme.展开更多
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can b...In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.展开更多
Spectrum sharing offers the opportunity for promising efficiency gains, and it will be a valuable tool in the era of future radios.To address this issue, we develop a multi-user cognitive radio sharing network based o...Spectrum sharing offers the opportunity for promising efficiency gains, and it will be a valuable tool in the era of future radios.To address this issue, we develop a multi-user cognitive radio sharing network based on opportunistic spectrum access and propose a new spectrum sharing strategy.The objective of our interest is to obtain the number of secondary users who can coexist peacefully with primary users to improve the utility of licensed spectrum, at the same time maximize the total goodput under the interference temperature and SINR constraints.Through analysis and simulation, the new strategy of spectrum sharing does improve the goodput performance as well as guarantee the Quality of Service(QoS) of primary and secondary users.展开更多
基金ACKNOWLEDGEMENT This work was supported in part by the Na- tional Natural Science Foundation of China un- der Grants No. 60972072, No. 61340033 and the 111 Project of China under Grant No. B08038.
文摘This paper presents a novel spec- trum sharing design aiming at optimising the performance of a Multiuser Orthogonal Freq- uency-Division Multiplexing (MU-OFDM) Co- gnitive Radio Network (CRN) that consists of multiple secondary Transmitter-Receiver (Tx-Rx) pairs. For most MU-OFDM systems, the Exc- lusive Subchannel Assignment (ESA) is an efficient resource allocation method. Noneth- eless, it is inappropriate for the network consi- dered in this paper, because subchannels shar- ing among secondary Tx-Rx pairs can further improve the system performance. We investi- gate the Weighted Sum Rate (WSR) maximi- zation problem under the Shared Subchannel Assignment (SSA), where each subchannel is shared by multiple secondary Tx-Rx pairs. With Lagrangian duality technique, we decompose the original resource allocation problem into sev- eral sub-problems on each subchannel and pro- pose a duality-based suhchannel sharing ap- proach. For practical realisation in the cogni- tive systems without central control entity, a distributed duality-based WSR maximization scheme is presented. Simulation results mani- fest that the proposed scheme achieves sig- nificantly better performance than ESA duality scheme.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028Fujian Provincial Natural Science Foundation of China under Grant No.2009J06002
文摘In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.
基金Supported by the National Natural Science Foundation of China (No.60772062)Key Research Project of MOE of China (No.206055).
文摘Spectrum sharing offers the opportunity for promising efficiency gains, and it will be a valuable tool in the era of future radios.To address this issue, we develop a multi-user cognitive radio sharing network based on opportunistic spectrum access and propose a new spectrum sharing strategy.The objective of our interest is to obtain the number of secondary users who can coexist peacefully with primary users to improve the utility of licensed spectrum, at the same time maximize the total goodput under the interference temperature and SINR constraints.Through analysis and simulation, the new strategy of spectrum sharing does improve the goodput performance as well as guarantee the Quality of Service(QoS) of primary and secondary users.