Nitrogen-doped carbon nanotubes (N-CNTs)/polyaniline (PANI) composites are developed as an electrode material for biosensors. The morphology, composition, and optical properties of the resulting products were characte...Nitrogen-doped carbon nanotubes (N-CNTs)/polyaniline (PANI) composites are developed as an electrode material for biosensors. The morphology, composition, and optical properties of the resulting products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet-visible absorption spectra (UV-vis). Furthermore, N-CNTs/PANI composite was immobilized on the surface of a glassy carbon electrode (GCE) and applied to construct a sensor. The obtained N-CNTs/PANI-modified GCE showed one pair of redox peaks and high catalytic activity for the oxidation of dopamine (DA) in a neutral environment. Differential pulse voltam-mograms results illustrate that the fabricated DA biosensor has high anti-interference ability towards ascorbic acid (AA). In addition, the fabricated biosensor showed superior performances with two wide linear ranges from 1 to 80 μM and from 1.5 to 3.5 mM and a low detection limit of 0.01 μM.展开更多
Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly...Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly sensitive and selective colorimetric detection of DA by using two specific ligands modified Ag nanoparticles, where the DA molecules can make dual recognition with high specificity. The colloidal suspension of modified Ag nanoparticles was agglomerated after interacting with DA, while the color of Ag nanoparticles suspension changed from yellow to brown, arising from the interparticle plasmon coupling during the aggregation of Ag nanoparticles. The modified Ag nanoparticles suspension and agglomeration were confirmed by transmission electron microscope images. The optical properties behind the color change were thoroughly investigated by using UV-Vis and Raman techniques. The changes in p H, zeta potential, particle size and surface charge density by adding DA were also determined by using dynamic light scattering measurements. The detection limits of modified Ag probes for DA was calculated to be 6.13′10^(-6) mol L^(-1)(S/N=2.04) and the correlation co-efficient was determined to be 0.9878. Because of the simplicity in operation and instrumentation of the colorimetric method, this work may afford a feasible, fast approach for detecting and monitoring the DA levels in physiological and pathological systems.展开更多
We applied the combination of in situ electrochemical liquid-phase microextraction and square-wave voltammetric stripping analysis for the first time as a highly sensitive and selective approach for the detection of d...We applied the combination of in situ electrochemical liquid-phase microextraction and square-wave voltammetric stripping analysis for the first time as a highly sensitive and selective approach for the detection of dopamine. A mixed gel of graphene sheets and an ionic liquid of 1-octyl-3-methylimidazolium hexaflurophosphate(OMim PF6) was used as a micro liquid-phase to pre-concentrate dopamine by controlled potential electrolysis from an aqueous solution(as a donor phase), followed by square-wave voltammetric stripping detection. Under optimized conditions, a linear calibration curve was obtained in the range of 0.05 to 1.0 ?mol/L in the presence of excess ascorbic acid and uric acid. The detection limit has been found to be 8.0 nmol/L(S/N=3).展开更多
基金supported by the National Natural Science Foundation of China (20905038, 20903057, 20974046, 50803027, 20874048 & 20804020)the National Basic Research Program of China (2009CB930600)+1 种基金the Natural Science Foundation of Jiangsu Province (08KJB150011 & 09KJB150007)the Fok Ying-Tong Education Foundation under Grant 111051
文摘Nitrogen-doped carbon nanotubes (N-CNTs)/polyaniline (PANI) composites are developed as an electrode material for biosensors. The morphology, composition, and optical properties of the resulting products were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and ultraviolet-visible absorption spectra (UV-vis). Furthermore, N-CNTs/PANI composite was immobilized on the surface of a glassy carbon electrode (GCE) and applied to construct a sensor. The obtained N-CNTs/PANI-modified GCE showed one pair of redox peaks and high catalytic activity for the oxidation of dopamine (DA) in a neutral environment. Differential pulse voltam-mograms results illustrate that the fabricated DA biosensor has high anti-interference ability towards ascorbic acid (AA). In addition, the fabricated biosensor showed superior performances with two wide linear ranges from 1 to 80 μM and from 1.5 to 3.5 mM and a low detection limit of 0.01 μM.
基金supported by the National Basic Research Program of China(2011CB933200)
文摘Dopamine(DA) plays an important role in health and peripheral nervous systems. Colorimetric detection of DA has the advantage of color change and simplicity in operation and instrumentation. Herein, we report a highly sensitive and selective colorimetric detection of DA by using two specific ligands modified Ag nanoparticles, where the DA molecules can make dual recognition with high specificity. The colloidal suspension of modified Ag nanoparticles was agglomerated after interacting with DA, while the color of Ag nanoparticles suspension changed from yellow to brown, arising from the interparticle plasmon coupling during the aggregation of Ag nanoparticles. The modified Ag nanoparticles suspension and agglomeration were confirmed by transmission electron microscope images. The optical properties behind the color change were thoroughly investigated by using UV-Vis and Raman techniques. The changes in p H, zeta potential, particle size and surface charge density by adding DA were also determined by using dynamic light scattering measurements. The detection limits of modified Ag probes for DA was calculated to be 6.13′10^(-6) mol L^(-1)(S/N=2.04) and the correlation co-efficient was determined to be 0.9878. Because of the simplicity in operation and instrumentation of the colorimetric method, this work may afford a feasible, fast approach for detecting and monitoring the DA levels in physiological and pathological systems.
基金financially supported by the National Natural Science Foundation of China(21335001,21075004)
文摘We applied the combination of in situ electrochemical liquid-phase microextraction and square-wave voltammetric stripping analysis for the first time as a highly sensitive and selective approach for the detection of dopamine. A mixed gel of graphene sheets and an ionic liquid of 1-octyl-3-methylimidazolium hexaflurophosphate(OMim PF6) was used as a micro liquid-phase to pre-concentrate dopamine by controlled potential electrolysis from an aqueous solution(as a donor phase), followed by square-wave voltammetric stripping detection. Under optimized conditions, a linear calibration curve was obtained in the range of 0.05 to 1.0 ?mol/L in the presence of excess ascorbic acid and uric acid. The detection limit has been found to be 8.0 nmol/L(S/N=3).