多能流计算是综合能源系统(integrated energy system,IES)分析和优化的基础。在各能源网络运营主体交互信息有限的背景下,为提升多能流计算的收敛性和计算效率,提出一种基于幂级数系数分向传递的递归型电-气-热多能流算法。首先,分别...多能流计算是综合能源系统(integrated energy system,IES)分析和优化的基础。在各能源网络运营主体交互信息有限的背景下,为提升多能流计算的收敛性和计算效率,提出一种基于幂级数系数分向传递的递归型电-气-热多能流算法。首先,分别建立电、气、热能源系统的全纯嵌入能流模型;其次,分析全纯嵌入法在多能流计算中的递归求解原理,将幂级数系数的传递划分为横向传递与纵向传递两类,建立可分向传递求解的电-气-热IES全纯嵌入多能流模型;接着,推导各全纯嵌入状态量的幂级数系数递归关系,通过幂级数系数的分向传递,递归求取状态量的幂级数系数,实现电-气-热多能流求解;最后,算例结果表明,所提方法能够以少量的交互信息实现多能流计算,具有更优的收敛性能和计算效率。展开更多
For acquiring the details in aluminum holding furnace with bottom porous brick purging system,efforts were performed to try to find out the potential optimal operation schemes.By adopting transient analysis scheme and...For acquiring the details in aluminum holding furnace with bottom porous brick purging system,efforts were performed to try to find out the potential optimal operation schemes.By adopting transient analysis scheme and constant boundary temperature,combustion in the furnace was investigated numerically using computational fluid dynamics(CFD).The predicted gas temperature shows good agreement with the measured results,and the predicted energy distribution of the furnace is consistent with that obtained from energy balance experiment,which confirms the reliability of the numerical solution.The results show that as the fuel-air mixture temperature rises up from 300 K to 500 K,the energy utilization of the furnace could increase from 34.55% to 37.14%.However,as the excess air coefficient increases from 1.0 to 1.4,energy utilization drops from 34.55% to 29.56%.Increasing the combustion temperature is the most effective way to improve the energy efficiency of the furnace.High reactant temperature and medium excess air coefficient are recommended for high operation performance,and keeping the furnace jamb sealed well for avoiding leakage has to be emphasized.展开更多
文摘多能流计算是综合能源系统(integrated energy system,IES)分析和优化的基础。在各能源网络运营主体交互信息有限的背景下,为提升多能流计算的收敛性和计算效率,提出一种基于幂级数系数分向传递的递归型电-气-热多能流算法。首先,分别建立电、气、热能源系统的全纯嵌入能流模型;其次,分析全纯嵌入法在多能流计算中的递归求解原理,将幂级数系数的传递划分为横向传递与纵向传递两类,建立可分向传递求解的电-气-热IES全纯嵌入多能流模型;接着,推导各全纯嵌入状态量的幂级数系数递归关系,通过幂级数系数的分向传递,递归求取状态量的幂级数系数,实现电-气-热多能流求解;最后,算例结果表明,所提方法能够以少量的交互信息实现多能流计算,具有更优的收敛性能和计算效率。
基金Project(2009GK2009) supported by the Science and Technology Program of Hunan Province,China
文摘For acquiring the details in aluminum holding furnace with bottom porous brick purging system,efforts were performed to try to find out the potential optimal operation schemes.By adopting transient analysis scheme and constant boundary temperature,combustion in the furnace was investigated numerically using computational fluid dynamics(CFD).The predicted gas temperature shows good agreement with the measured results,and the predicted energy distribution of the furnace is consistent with that obtained from energy balance experiment,which confirms the reliability of the numerical solution.The results show that as the fuel-air mixture temperature rises up from 300 K to 500 K,the energy utilization of the furnace could increase from 34.55% to 37.14%.However,as the excess air coefficient increases from 1.0 to 1.4,energy utilization drops from 34.55% to 29.56%.Increasing the combustion temperature is the most effective way to improve the energy efficiency of the furnace.High reactant temperature and medium excess air coefficient are recommended for high operation performance,and keeping the furnace jamb sealed well for avoiding leakage has to be emphasized.