研究了高斯白噪声激励下多自由度粘弹性非线性系统的瞬态响应.首先,通过将粘弹性项对系统的作用近似地简化为对原系统阻尼部分以及刚度部分的修正,得到近似的不具粘弹性项的等效非线性随机系统.然后,应用基于广义谐和函数的随机平均法,...研究了高斯白噪声激励下多自由度粘弹性非线性系统的瞬态响应.首先,通过将粘弹性项对系统的作用近似地简化为对原系统阻尼部分以及刚度部分的修正,得到近似的不具粘弹性项的等效非线性随机系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过多重级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,关于时间的系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以耦合的二自由度Duffing-van der Pol振子系统为例,通过与原系统数值模拟结果的比较分析验证了所提出的半解析方法的有效性,并讨论了粘弹性对系统响应的影响.展开更多
本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Pl...本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以调制白噪声激励下阻尼耦合的二自由度Duffing-van der Pol振子系统为例,验证其求解过程,并讨论不同时滞的影响.展开更多
文摘研究了高斯白噪声激励下多自由度粘弹性非线性系统的瞬态响应.首先,通过将粘弹性项对系统的作用近似地简化为对原系统阻尼部分以及刚度部分的修正,得到近似的不具粘弹性项的等效非线性随机系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过多重级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,关于时间的系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以耦合的二自由度Duffing-van der Pol振子系统为例,通过与原系统数值模拟结果的比较分析验证了所提出的半解析方法的有效性,并讨论了粘弹性对系统响应的影响.
文摘本文研究了调制白噪声激励下多自由度时滞非线性系统的近似瞬态响应概率密度.首先,由系统当前状态与时滞状态的关系,将原时滞系统近似等效为无时滞系统.然后,应用基于广义谐和函数的随机平均法,导出关于幅值瞬态概率密度的平均Fokker-Planck-Kolmogorov方程.该方程的解可通过级数式表示,基函数为幅值相关正交函数,系数为时间函数.应用Galerkin方法,系数可由一阶线性微分方程组解得,从而得出幅值响应的瞬态概率密度、状态空间概率密度及幅值统计矩的半解析表达式.最后,以调制白噪声激励下阻尼耦合的二自由度Duffing-van der Pol振子系统为例,验证其求解过程,并讨论不同时滞的影响.