Self‐assembled mesoporous polyoxometalate‐based ionic hybrid catalyst,[PxyDim]2.5PMoV2,was prepared by combining p‐xylene‐tethered diimidazole ionic liquid[PxyDim]Cl2with Keggin‐structured V‐substituted polyoxom...Self‐assembled mesoporous polyoxometalate‐based ionic hybrid catalyst,[PxyDim]2.5PMoV2,was prepared by combining p‐xylene‐tethered diimidazole ionic liquid[PxyDim]Cl2with Keggin‐structured V‐substituted polyoxometalate H5PMo10V2O40.The obtained hybrid was shown to be a mesostructured and hydrophobic material with good thermal stability.In the H2O2‐based hydroxylation of benzene to phenol,the hybrid showed extraordinary catalytic activity and rate,and quite stable reusability.The unique hydrophobic properties and mesoporous structure of the hybrid were responsible for its excellent catalytic performance.展开更多
In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-tr...In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-trimethylphenol) by oxygen into TMQ (2,3,5-trimethyl-l,4-benzoquinone), the latter being the key intermediate in the synthesis of vitamin E. The TMQ yield was analyzed regarding solvent type, reaction temperature, molar HPA-x ':TMP ratio, and the concentration of vanadium (V) in the HPA-x' solution. The TMQ yield was found to depend strongly on the catalyst redox potential and the rate of electron transfer. The results obtained enabled to establish the optimal reaction conditions as well as to suggest the reaction mechanism. In the target reaction, which proceeds in the two-phase system, the TMQ yield is higher than 99%. After phase separation, the catalyst is rapidly regenerated by oxygen and reused.展开更多
基金supported by the National Natural Science Foundation of China (21506118,21476132,51574160)Shandong Province Founda-tion for Outstanding Young Scientist (BS2014CL030)~~
文摘Self‐assembled mesoporous polyoxometalate‐based ionic hybrid catalyst,[PxyDim]2.5PMoV2,was prepared by combining p‐xylene‐tethered diimidazole ionic liquid[PxyDim]Cl2with Keggin‐structured V‐substituted polyoxometalate H5PMo10V2O40.The obtained hybrid was shown to be a mesostructured and hydrophobic material with good thermal stability.In the H2O2‐based hydroxylation of benzene to phenol,the hybrid showed extraordinary catalytic activity and rate,and quite stable reusability.The unique hydrophobic properties and mesoporous structure of the hybrid were responsible for its excellent catalytic performance.
文摘In the present study, the modified (non-Keggin-type) aqueous solutions of Mo-V-phosphoric heteropoly acids HaPzMoyVx,Oh (HPA-x') were applied as homogeneous catalysts for the two-stage oxidation of TMP (2,3,6-trimethylphenol) by oxygen into TMQ (2,3,5-trimethyl-l,4-benzoquinone), the latter being the key intermediate in the synthesis of vitamin E. The TMQ yield was analyzed regarding solvent type, reaction temperature, molar HPA-x ':TMP ratio, and the concentration of vanadium (V) in the HPA-x' solution. The TMQ yield was found to depend strongly on the catalyst redox potential and the rate of electron transfer. The results obtained enabled to establish the optimal reaction conditions as well as to suggest the reaction mechanism. In the target reaction, which proceeds in the two-phase system, the TMQ yield is higher than 99%. After phase separation, the catalyst is rapidly regenerated by oxygen and reused.