-
题名结合像素模式和特征点模式的实时表情识别
被引量:4
- 1
-
-
作者
梁华刚
易生
茹锋
-
机构
长安大学电子与控制工程学院
-
出处
《中国图象图形学报》
CSCD
北大核心
2017年第12期1737-1749,共13页
-
基金
陕西省自然科学基金国际合作项目(2014KW01-05)
-
文摘
目的目前2D表情识别方法对于一些混淆性较高的表情识别率不高并且容易受到人脸姿态、光照变化的影响,利用RGBD摄像头Kinect获取人脸3D特征点数据,提出了一种结合像素2D特征和特征点3D特征的实时表情识别方法。方法首先,利用3种经典的LBP(局部二值模式)、Gabor滤波器、HOG(方向梯度直方图)提取了人脸表情2D像素特征,由于2D像素特征对于人脸表情描述能力的局限性,进一步提取了人脸特征点之间的角度、距离、法向量3种3D表情特征,以对不同表情的变化情况进行更加细致地描述。为了提高算法对混淆性高的表情识别能力并增加鲁棒性,将2D像素特征和3D特征点特征分别训练了3组随机森林模型,通过对6组随机森林分类器的分类结果加权组合,得到最终的表情类别。结果在3D表情数据集Face3D上验证算法对9种不同表情的识别效果,结果表明结合2D像素特征和3D特征点特征的方法有利于表情的识别,平均识别率达到了84.7%,高出近几年提出的最优方法 4.5%,而且相比单独地2D、3D融合特征,平均识别率分别提高了3.0%和5.8%,同时对于混淆性较强的愤怒、悲伤、害怕等表情识别率均高于80%,实时性也达到了10 15帧/s。结论该方法结合表情图像的2D像素特征和3D特征点特征,提高了算法对于人脸表情变化的描述能力,而且针对混淆性较强的表情分类,对多组随机森林分类器的分类结果加权平均,有效地降低了混淆性表情之间的干扰,提高了算法的鲁棒性。实验结果表明了该方法相比普通的2D特征、3D特征等对于表情的识别不仅具有一定的优越性,同时还能保证算法的实时性。
-
关键词
多特征提取
实时表情识别
随机森林
Kinect深度传感器
多表情分类
-
Keywords
multi-feature extraction
real-time facial expression recognition
random forest
Kinect depth sensor
multi- expression classification
-
分类号
N391
[自然科学总论]
-