Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and ti...Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and time-varying, the LPV technique is used for FCS. And then the adaptive fault estimation algorithm based on the LPV adaptive observer is proposed to estimate the fault. To minimize the effect of disturbances on the fault estimation, the H~ robust performance index is introduced to design the LPV adaptive fault diagnosis observer and the fault estimation algorithm. The result shows that the method has good estimation performance and is robust to external disturbances. The design method is presented in terms of linear matrix inequalities (LMIs). Finally, a helicopter LPV FCS model with the actuator fault is used to illustrate the effectiveness of the proposed method.展开更多
A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According...A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.展开更多
Urbanization of animal habitats has the potential to affect the natural communication systems of any species able to survive in the changed environment. Urban animals such as squirrels use multiple signal channels to ...Urbanization of animal habitats has the potential to affect the natural communication systems of any species able to survive in the changed environment. Urban animals such as squirrels use multiple signal channels to communicate, but it is un- known how ttrbanization has affected these behaviors. Multimodal commtmication, involving more than one sensory modality, can be studied by use of biomimetic mechanical animal models that are designed to simulate the multimodal signals and be pre- sented to animal subjects in the field. In this way the responses to the various signal components can be compared and contrasted to determine whether the multimodal signal is made up of redundant or nonredundant components. In this study, we presented wild gray squirrels in relatively urban and relatively rural habitats in Western Massachusetts with a biomimetic squirrel model that produced tail flags and alarm barks in a variety of combinations. We found that the squirrels responded to each unimodal component on its own, the bark and tail flag, but they responded most to the complete multimodal signal, containing both the acoustic and the moving visual components, providing evidence that in this context the signal components are redundant and that their combination elicits multimodal enhancement. We expanded on the results of Partan et al. (2009) by providing data on sig- naling behavior in the presence and absence of conspecifics, suggesting that alarm signaling is more likely if conspecifics are present. We found that the squirrels were more active in the urban habitats and that they responded more to tail flagging in the urban habitats as compared to the rural ones, suggesting the interesting possibility of a multimodal shift from reliance on audio to visual signals in noisier more crowded urban habitats [Current Zoology 56 (3): 313-326, 2010].展开更多
A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementati...A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.展开更多
The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed outpu...The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.展开更多
基金Supported by the National Natural Science Foundation of China(60811120024)Aeronautical Scienceand Technology Innovation Foundation of China(08C52001)~~
文摘Based on the linear parameter-varying (LPV) adaptive observer, the robust fault diagnosis for a class of LPV systems with external disturbances is studied. Since the flight control system (FCS) is nonlinear and time-varying, the LPV technique is used for FCS. And then the adaptive fault estimation algorithm based on the LPV adaptive observer is proposed to estimate the fault. To minimize the effect of disturbances on the fault estimation, the H~ robust performance index is introduced to design the LPV adaptive fault diagnosis observer and the fault estimation algorithm. The result shows that the method has good estimation performance and is robust to external disturbances. The design method is presented in terms of linear matrix inequalities (LMIs). Finally, a helicopter LPV FCS model with the actuator fault is used to illustrate the effectiveness of the proposed method.
基金Project(61673386)supported by the National Natural Science Foundation of ChinaProject(2018QNJJ006)supported by the High-Tech Institute of Xi’an,China
文摘A global fast convergent integrated guidance and control design approach is proposed. A disturbance observer is utilized to estimate the uncertainties of integrated guidance and control model in finite time. According to the multiple sliding-mode surface control, the independent nonsingular terminal sliding functions are presented in each step, and all the sliding-mode surfaces run parallel. These presented sliding-mode surfaces keep zero value from a certain time, and the system states converge quickly in sliding phase. Therefore, the system response speed is increased. The proposed method offers the global convergent time analytically, which is useful to optimize the transient performance of system. Simulation results are used to verify the proposed method.
文摘Urbanization of animal habitats has the potential to affect the natural communication systems of any species able to survive in the changed environment. Urban animals such as squirrels use multiple signal channels to communicate, but it is un- known how ttrbanization has affected these behaviors. Multimodal commtmication, involving more than one sensory modality, can be studied by use of biomimetic mechanical animal models that are designed to simulate the multimodal signals and be pre- sented to animal subjects in the field. In this way the responses to the various signal components can be compared and contrasted to determine whether the multimodal signal is made up of redundant or nonredundant components. In this study, we presented wild gray squirrels in relatively urban and relatively rural habitats in Western Massachusetts with a biomimetic squirrel model that produced tail flags and alarm barks in a variety of combinations. We found that the squirrels responded to each unimodal component on its own, the bark and tail flag, but they responded most to the complete multimodal signal, containing both the acoustic and the moving visual components, providing evidence that in this context the signal components are redundant and that their combination elicits multimodal enhancement. We expanded on the results of Partan et al. (2009) by providing data on sig- naling behavior in the presence and absence of conspecifics, suggesting that alarm signaling is more likely if conspecifics are present. We found that the squirrels were more active in the urban habitats and that they responded more to tail flagging in the urban habitats as compared to the rural ones, suggesting the interesting possibility of a multimodal shift from reliance on audio to visual signals in noisier more crowded urban habitats [Current Zoology 56 (3): 313-326, 2010].
基金The National Natural Science Foundation of China(No.51576041,51506029)
文摘A model-assistant extended state observer(MESO)-based decoupling control strategy is proposed for boiler-turbine units in the presence of unknown external disturbance and model-plant mismatch. For ease of implementation, the decoupling compensator is reduced to the proportion integration(PI) decoupler with the frequency domain analysis, where the decoupling error in collusion of uncertainties and disturbances can be estimated by the proposed MESO and then compensated. To decrease the sensitivity of the dynamic error for the decoupling control and fulfill various requirements of constraints, such as safety operation, energy conservation, emission reduction, etc., the plant is transmitted through a scheduled steady state region which is achieved from the optimized reference governor in advance. Simulation results show that the proposed control strategy can well suppress various disturbances including a decoupling error, and multi-objective optimization can meet multiple requirements with the premise of safety production.
基金National Natural Science Foundation of China(No.61663020)National Key R&D Program of China(No.2017YFB1201003-020)Natural Science Foundation of Gansu Province(No.17JR5RA096)
文摘The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.