Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,...Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.展开更多
The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed outpu...The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.展开更多
This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on cons...This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on consensus,time-varying consensus gains are adopted,based on whichconsensus protocols are designed.By using the tools of stochastic analysis and algebraic graph theory,asufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixedtopologies.This condition is shown to be necessary and sufficient in the noise-free case.Furthermore,by using a common Lyapunov function,the result is extended to the switching topology case.展开更多
基金This research was jointly funded by the Second Tibetan Plateau Scientific Expedition and Research Program(Grant Nos.2019QZKK0103 and 2019QZKK0105)the National Natural Science Foundation of China(Grant Nos.91837208 and 42075085).
文摘Changes in the water cycle on the Tibetan Plateau(TP)have a significant impact on local agricultural production and livelihoods and its downstream regions.Against the background of widely reported warming and wetting,the hydrological cycle has accelerated and the likelihood of extreme weather events and natural disasters occurring(i.e.,snowstorms,floods,landslides,mudslides,and ice avalanches)has also intensified,especially in the highelevation mountainous regions.Thus,an accurate estimation of the intensity and variation of each component of the water cycle is an urgent scientific question for the assessment of plateau environmental changes.Following the transformation and movement of water between the atmosphere,biosphere and hydrosphere,the authors highlight the urgent need to strengthen the three-dimensional comprehensive observation system(including the eddy covariance system;planetary boundary layer tower;profile measurements of temperature,humidity,and wind by microwave radiometers,wind profiler,and radiosonde system;and cloud and precipitation radars)in the TP region and propose a practical implementation plan.The construction of such a three-dimensional observation system is expected to promote the study of environmental changes and natural hazards prevention.
基金National Natural Science Foundation of China(No.61663020)National Key R&D Program of China(No.2017YFB1201003-020)Natural Science Foundation of Gansu Province(No.17JR5RA096)
文摘The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60821091 and 60934006Part of this work was presented at the 17th IFAC World Congress, Seoul, Korea, July 2008
文摘This work is concerned with consensus control for a class of leader-following multi-agentsystems (MASs).The information that each agent received is corrupted by measurement noises.Toreduce the impact of noises on consensus,time-varying consensus gains are adopted,based on whichconsensus protocols are designed.By using the tools of stochastic analysis and algebraic graph theory,asufficient condition is obtained for the protocol to ensure strong mean square consensus under the fixedtopologies.This condition is shown to be necessary and sufficient in the noise-free case.Furthermore,by using a common Lyapunov function,the result is extended to the switching topology case.