期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进K-means加权自适应多视图数据聚类算法 被引量:6
1
作者 李丽亚 闫宏印 《计算机仿真》 北大核心 2021年第8期314-317,429,共5页
在如今的大数据时代,视图数据越来越多,由于这些数据表现出明显的多样性和差异性,使得多视图数据聚类成为了大数据的研究重点问题之一。针对多视图数据聚类问题,提出了一种基于改进K-means加权自适应多视图聚类算法。首先,提出加权自适... 在如今的大数据时代,视图数据越来越多,由于这些数据表现出明显的多样性和差异性,使得多视图数据聚类成为了大数据的研究重点问题之一。针对多视图数据聚类问题,提出了一种基于改进K-means加权自适应多视图聚类算法。首先,提出加权自适应多视图聚类算法,降低视图同维度变换的复杂性。然后考虑到数据的误差性和离群点问题,对数据条件进行优化处理,把Frobenius范数作为条件进行改进,起到对多视图数据加权的作用。再结合自由度问题,找到多视图数据的最优解,降低目标函数自由度。最后根据K-means优化理论,通过权重系数减少数据对多视图聚类的影响,确定多视图不同簇的聚类中心,从而完成对所有视图数据的优化。基于MATLAB仿真平台,分别对5个数据集采用4种性能评价指标进行仿真验证。实验结果表明,所提出的算法大大减少了运行时间,而且具有较好的聚类性能。 展开更多
关键词 多视图数据聚类 加权自适应 优化理论 性能指标 数据
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部