期刊文献+
共找到206篇文章
< 1 2 11 >
每页显示 20 50 100
基于自适应学习的多视图无监督特征选择方法 被引量:2
1
作者 何添 沈宗鑫 +1 位作者 黄倩倩 黄雁勇 《计算机应用》 CSCD 北大核心 2023年第9期2657-2664,共8页
现有的多视图无监督特征选择方法大多存在以下问题:样本的相似度矩阵、不同视图的权重矩阵和特征的权重矩阵往往是预先定义的,不能有效刻画数据间的真实结构以及反映不同视图和特征的重要性,进而导致不能选出有用的特征。为解决上述问题... 现有的多视图无监督特征选择方法大多存在以下问题:样本的相似度矩阵、不同视图的权重矩阵和特征的权重矩阵往往是预先定义的,不能有效刻画数据间的真实结构以及反映不同视图和特征的重要性,进而导致不能选出有用的特征。为解决上述问题,首先,在多视图模糊C均值聚类的基础上进行视图权重和特征权重的自适应学习,以同时实现特征选择并保证聚类性能;然后,在拉普拉斯秩约束下自适应地学习样本的相似度矩阵,并构建一个基于自适应学习的多视图无监督特征选择(ALMUFS)方法;最后,设计一种交替迭代优化算法对目标函数进行求解,并在8个真实数据集上将所提方法与6种无监督特征选择基线方法进行比较。实验结果表明,ALMUFS的聚类精度和F-measure优于其他方法,与自适应协作相似性学习(ACSL)相比,平均提高8.99和11.87个百分点;与ASVM(Adaptive Similarity and View Weight)相比,平均提高11.09和13.21个百分点,验证了所提方法的可行性和有效性。 展开更多
关键词 多视图无监督特征选择 自适应学习 相似度矩阵 视图权重 特征权重
下载PDF
一类弱监督数据中多视角扰动的特征选择方法
2
作者 郭启航 王平心 +2 位作者 杜亮 杨习贝 钱宇华 《江苏科技大学学报(自然科学版)》 CAS 2024年第2期101-108,共8页
弱标签消歧技术可以用来消除数据中的噪声标签.然而,经由弱标签消歧后的数据中依然可能存在冗余或不相关特征,因此带来了弱监督数据中的特征选择这一实际问题.在弱标签消歧后得到的数据的基础上,提出了一种基于多视角扰动的特征选择框架... 弱标签消歧技术可以用来消除数据中的噪声标签.然而,经由弱标签消歧后的数据中依然可能存在冗余或不相关特征,因此带来了弱监督数据中的特征选择这一实际问题.在弱标签消歧后得到的数据的基础上,提出了一种基于多视角扰动的特征选择框架,其能够分别从样本和特征多个视角出发,构造不同的扰动数据,以便求解出多个不同的特征选择结果,从而为后续的学习任务提供基础性集成工具.此外,所提的多视角扰动特征选择框架适用于不同类型、不同约束下的搜索进程.在12组高维数据上,通过注入5种不同比例的标签噪声和使用3种不同类型的特征度量准则,实验结果表明,所提方法求得的特征选择结果能够从准确率和稳定性的层面极大地提升分类性能. 展开更多
关键词 特征选择 多视角 粗糙集 超集学习 监督
下载PDF
基于图滤波与自表示的无监督特征选择算法
3
作者 梁云辉 甘舰文 +2 位作者 陈艳 周芃 杜亮 《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期655-664,共10页
针对现有方法未考虑数据的高阶邻域信息而不能完全捕捉数据内在结构的问题,提出一种基于图滤波与自表示的无监督特征选择算法.首先,将高阶图滤波器应用于数据获得其平滑表示,并设计一个正则化器联合高阶图信息进行自表示矩阵学习以捕捉... 针对现有方法未考虑数据的高阶邻域信息而不能完全捕捉数据内在结构的问题,提出一种基于图滤波与自表示的无监督特征选择算法.首先,将高阶图滤波器应用于数据获得其平滑表示,并设计一个正则化器联合高阶图信息进行自表示矩阵学习以捕捉数据的内在结构;其次,应用l_(2,1)范数重建误差项和特征选择矩阵,以增强模型的鲁棒性与稀疏性选择判别的特征;最后,用一个迭代算法有效地求解所提出的目标函数,并进行仿真实验以验证该算法的有效性. 展开更多
关键词 图滤波 自表示 稀疏 无监督特征选择
下载PDF
自适应图嵌入和非凸正则特征自表达的无监督特征选择
4
作者 李梦晴 孙林 徐久成 《计算机工程与应用》 CSCD 北大核心 2024年第16期177-185,共9页
针对传统的无监督特征选择不能充分兼顾样本及特征的局部结构,以及没有考虑非凸正则项带来更稀疏的解并能够选择出更具判别性特征等问题,提出了自适应图嵌入和非凸正则特征自表达的无监督特征选择方法。通过图嵌入降低特征维度,获得样... 针对传统的无监督特征选择不能充分兼顾样本及特征的局部结构,以及没有考虑非凸正则项带来更稀疏的解并能够选择出更具判别性特征等问题,提出了自适应图嵌入和非凸正则特征自表达的无监督特征选择方法。通过图嵌入降低特征维度,获得样本相似度矩阵,引导特征选择;引入特征自表达策略,用其余特征线性表示每一个特征,考虑特征间的相似性关系,保持特征局部结构;在特征自表达中添加非凸正则项,获得行更稀疏的权重矩阵,实现特征选择;在特征选择过程中执行自适应图嵌入对数据局部结构进行学习,选择最优特征子集;为求解非凸稀疏问题,使用交替迭代方法优化求解模型,设计了一种新的无监督特征选择算法。在6个数据集上与其他算法进行实验对比分析,实验结果表明所提算法是有效的。 展开更多
关键词 无监督特征选择 图嵌入 特征自表达 非凸正则项 自适应
下载PDF
基于F范数群组效应和谱聚类的无监督特征选择
5
作者 林清水 田鹏飞 张旺 《计算机系统应用》 2024年第7期201-212,共12页
基于谱聚类的无监督特征选择主要涉及相关系数矩阵和聚类指示矩阵,在以往的研究中,学者们主要关注于相关系数矩阵,并为此设计了一系列约束和改进,但仅关注相关系数矩阵并不能充分学习到数据内在结构.考虑群组效应,本文向聚类指示矩阵施... 基于谱聚类的无监督特征选择主要涉及相关系数矩阵和聚类指示矩阵,在以往的研究中,学者们主要关注于相关系数矩阵,并为此设计了一系列约束和改进,但仅关注相关系数矩阵并不能充分学习到数据内在结构.考虑群组效应,本文向聚类指示矩阵施加F范数,并结合谱聚类以使相关系数矩阵学习更为准确的聚类指示信息,通过交替迭代法求解两个矩阵.不同类型的真实数据集实验表明文中方法的有效性,此外,实验表明F范数还可以使方法更加鲁棒. 展开更多
关键词 无监督特征选择 谱聚类 群组效应 F范数 降维
下载PDF
多特征选择与双向残差融合的无监督水下图像增强 被引量:2
6
作者 胡雨航 赵磊 +1 位作者 李恒 刘辉 《电子测量与仪器学报》 CSCD 北大核心 2023年第9期190-202,共13页
如今,利用合成的成对数据集训练的有监督模型泛化能力弱,在多变的实际水下环境中表现不佳,而无监督模型虽摆脱了成对数据集的依赖,但生成图像可能因缺少特征信息导致图像视觉质量较差。故以循环生成对抗网络为架构,提出多特征选择与双... 如今,利用合成的成对数据集训练的有监督模型泛化能力弱,在多变的实际水下环境中表现不佳,而无监督模型虽摆脱了成对数据集的依赖,但生成图像可能因缺少特征信息导致图像视觉质量较差。故以循环生成对抗网络为架构,提出多特征选择与双向残差融合的水下图像增强方法。一方面,设计以混合注意力为基础的多特征选择模块对水下图像的多种特征进行选择,再由双向残差融合对传统U型跳跃连接进行优化,使图像特征高效表达,有效恢复水下图像的纹理与色彩。另一方面,在判别器中引入混合注意力并提出内容感知损失和风格感知损失,保证增强图像在全局内容、局部纹理、风格特征等方面和清晰图像一致。与现有的无监督和有监督模型相比较,该模型PSNR分别提高了6%和2%,SSIM分别提高了4%和3%,对水下图像有着显著的增强效果,在色彩真实度和饱和度上相比其他现有方法更加优秀。 展开更多
关键词 无监督模型 循环生成对抗网络 特征选择 双向残差融合 水下图像增强
下载PDF
基于多视图稀疏特征选择的架空输电线路故障原因判别 被引量:6
7
作者 苏超 杨强 《智慧电力》 北大核心 2023年第3期96-103,共8页
日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息... 日渐增加的多源异构数据为输电线路故障原因判别带来了信息融合的机遇和挑战。为解决故障录波和多源关联信息的特征融合问题,引入多视图学习概念,提出了基于多视图稀疏特征选择的架空输电线路故障原因判别方法。根据故障录波和关联信息区分并提取双视图故障特征,随后基于稀疏表示提出了层次多视图特征选择算法(HMVFS)。该算法引入ε-dragging扩大分类类别的标签间距,并通过Frobenius范数和l2,1范数的正则化项分别从故障视图和故障特征的高低维度实现特征选择。最后采用某地区输电线路故障数据进行对比实验,结果验证了该方法在输电线路故障原因判别的有效性和优越性。 展开更多
关键词 输电线路 故障原因判别 多视图学习 稀疏表示 特征选择
下载PDF
半监督Relief-F特征选择算法 被引量:2
8
作者 靳炳烨 王锋 魏巍 《河北师范大学学报(自然科学版)》 CAS 2023年第4期348-353,共6页
数据规模的不断增加,使得为数据库中全部样本做标记变得尤为困难,数据集也因此呈现出了明显的弱标记性.为此,针对大规模少数标记数据集的特征选择问题,基于经典的Relief-F算法,通过综合考虑有标记样本与无标记样本对数据样本近邻的影响... 数据规模的不断增加,使得为数据库中全部样本做标记变得尤为困难,数据集也因此呈现出了明显的弱标记性.为此,针对大规模少数标记数据集的特征选择问题,基于经典的Relief-F算法,通过综合考虑有标记样本与无标记样本对数据样本近邻的影响,重新定义样本近邻的搜索策略,提出了一种面向符号数据的半监督特征选择算法.为进一步分析新算法的有效性,仿真实验中选取了5组UCI数据集,并引入机器学习中3个常用分类器对新算法和对比算法的特征选择结果的分类性能作了分析和比较,实验结果很好地验证了本文中提出的新算法的有效性和可行性. 展开更多
关键词 特征选择 Relief-F算法 监督学习 距离度量
下载PDF
基于伪标签回归和流形正则化的无监督特征选择算法 被引量:2
9
作者 宋雨 肖玉柱 宋学力 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期263-272,共10页
无监督特征选择是无标签高维数据预处理过程中一种有效的数据降维技术,然而大多数无监督特征选择算法忽略了数据样本本身的类簇结构特性,选择具有低判别性信息的特征.基于此,提出一种基于伪标签回归和流形正则化的无监督特征选择算法.... 无监督特征选择是无标签高维数据预处理过程中一种有效的数据降维技术,然而大多数无监督特征选择算法忽略了数据样本本身的类簇结构特性,选择具有低判别性信息的特征.基于此,提出一种基于伪标签回归和流形正则化的无监督特征选择算法.具体地,联合伪标签回归和最大化类间散度来保证算法在迭代过程中学习伪标签,同时,自适应学习数据样本之间的局部几何结构,获得更加精准的标签信息和结构信息,进而选择具有高判别性且能保持数据流形结构的特征.在四个公开数据集上的对比实验表明,提出算法的特征选择结果优于现有的一些无监督特征选择算法. 展开更多
关键词 无监督特征选择算法 判别信息 伪标签回归 最大化类间散度 流形正则化
下载PDF
一种具有缺失数据的无监督ReliefF特征选择算法 被引量:3
10
作者 薛露宇 宋燕 《小型微型计算机系统》 CSCD 北大核心 2023年第7期1441-1448,共8页
目前,大多数特征选择算法是针对完整数据集的.而面对缺失及无标签数据集时,多数特征选择算法是无效的.为了解决缺失及无标签数据集的特征选择问题,本文提出了一种基于加权FCM,融合互信息同时交替更新特征权重的ReliefF算法(WFCM-IRelief... 目前,大多数特征选择算法是针对完整数据集的.而面对缺失及无标签数据集时,多数特征选择算法是无效的.为了解决缺失及无标签数据集的特征选择问题,本文提出了一种基于加权FCM,融合互信息同时交替更新特征权重的ReliefF算法(WFCM-IReliefF,Improved ReliefF Based on WFCM).首先,对均值预填补的完整数据集利用FCM算法进行无监督学习,从而找到样本近邻;其次,将ReliefF算法计算得到的特征权重代入加权FCM算法中,解决原始空间与特征空间的不同造成的聚类效果不佳的问题,通过加权FCM算法和ReliefF算法交替更新得到关键特征;再者,对特征选择后的数据集利用矩阵分解技术改善对缺失数据的预填补.最后,利用多个UCI公共数据集的对比实验,验证了本文提出的算法与其他对比算法相比有较为满意的效果. 展开更多
关键词 特征选择 矩阵分解 模糊C均值聚类 无监督学习
下载PDF
基于对偶流形重排序的无监督特征选择算法 被引量:2
11
作者 梁云辉 甘舰文 +2 位作者 陈艳 周芃 杜亮 《计算机科学》 CSCD 北大核心 2023年第7期72-81,共10页
在许多数据分析任务中,经常会遇到高维数据。特征选择技术旨在从原始高维数据中找到最具代表性的特征,但由于缺乏类标签信息,相比有监督场景,在无监督学习场景中选择合适的特征困难得多。传统的无监督特征选择方法通常依据某些准则对样... 在许多数据分析任务中,经常会遇到高维数据。特征选择技术旨在从原始高维数据中找到最具代表性的特征,但由于缺乏类标签信息,相比有监督场景,在无监督学习场景中选择合适的特征困难得多。传统的无监督特征选择方法通常依据某些准则对样本的特征进行评分,在这个过程中样本是被无差别看待的。然而这样做并不能完全捕捉数据的内在结构,不同样本的重要性应该是有差异的,并且样本权重与特征权重之间存在一种对偶关系,它们会互相影响。为此,提出了一种基于对偶流形重排序的无监督特征选择算法(Unsupervised Feature Selection Algorithm based on Dual Manifold Re-Ranking, DMRR),分别构建不同的相似性矩阵来刻画样本与样本、特征与特征、样本与特征的流形结构,并结合样本与特征的初始得分进行流形上的重排序。将DMRR与3种原始无监督特征选择算法以及2种无监督特征选择后处理算法进行比较,实验结果表明样本重要性信息、样本与特征之间的对偶关系有助于实现更优的特征选择。 展开更多
关键词 对偶 流形学习 重排序 特征选择 无监督学习
下载PDF
面向大规模特征选择的自监督数据驱动粒子群优化算法 被引量:2
12
作者 黎建宇 詹志辉 《智能系统学报》 CSCD 北大核心 2023年第1期194-206,共13页
大规模特征选择问题的求解通常面临两大挑战:一是真实标签不足,难以引导算法进行特征选择;二是搜索空间规模大,难以搜索到满意的高质量解。为此,提出了新型的面向大规模特征选择的自监督数据驱动粒子群优化算法。第一,提出了自监督数据... 大规模特征选择问题的求解通常面临两大挑战:一是真实标签不足,难以引导算法进行特征选择;二是搜索空间规模大,难以搜索到满意的高质量解。为此,提出了新型的面向大规模特征选择的自监督数据驱动粒子群优化算法。第一,提出了自监督数据驱动特征选择的新型算法框架,可不依赖于真实标签进行特征选择。第二,提出了基于离散区域编码的搜索策略,帮助算法在大规模搜索空间中找到更优解。第三,基于上述的框架和方法,提出了自监督数据驱动粒子群优化算法,实现对问题的求解。在大规模特征数据集上的实验结果显示,提出的算法与主流有监督算法表现相当,并比前沿无监督算法具有更高的特征选择效率。 展开更多
关键词 特征选择 大规模优化 粒子群优化算法 进化计算 群体智能 数据驱动 监督学习 离散区域编码
下载PDF
基于模糊粗糙集的无监督动态特征选择算法
13
作者 马磊 罗川 +1 位作者 李天瑞 陈红梅 《计算机应用》 CSCD 北大核心 2023年第10期3121-3128,共8页
动态特征选择算法能够大幅提升处理动态数据的效率,然而目前基于模糊粗糙集的无监督的动态特征选择算法较少。针对上述问题,提出一种特征分批次到达情况下的基于模糊粗糙集的无监督动态特征选择(UDFRFS)算法。首先,通过定义伪三角范数... 动态特征选择算法能够大幅提升处理动态数据的效率,然而目前基于模糊粗糙集的无监督的动态特征选择算法较少。针对上述问题,提出一种特征分批次到达情况下的基于模糊粗糙集的无监督动态特征选择(UDFRFS)算法。首先,通过定义伪三角范数和新的相似关系在已有数据的基础上进行模糊关系值的更新过程,从而减少不必要的运算过程;其次,通过利用已有的特征选择结果,在新的特征到达后,使用依赖度判断原始特征部分是否需要重新计算,以减少冗余的特征选择过程,从而进一步提高特征选择的速度。实验结果表明,UDFRFS相较于静态的基于依赖度的无监督模糊粗糙集特征选择算法,在时间效率方面能够提升90个百分点以上,同时保持较好的分类精度和聚类表现。 展开更多
关键词 特征选择 模糊粗糙集 动态数据 无监督特征选择 依赖度
下载PDF
基于L_(2,0)范数约束和冗余度学习的无监督特征选择算法
14
作者 蒙莹莹 李巧艳 +1 位作者 杨小飞 袁林 《郑州大学学报(理学版)》 CAS 北大核心 2023年第5期81-88,共8页
为了更好地消除特征间的冗余,结合稀疏学习,提出一种融合特征冗余度学习的稀疏无监督特征选择算法。首先,该算法利用L1范数度量投影数据点与聚类标签之间的损失,引入辅助变量将聚类标签的编码矩阵的正交性与非负性分离,确保编码矩阵是... 为了更好地消除特征间的冗余,结合稀疏学习,提出一种融合特征冗余度学习的稀疏无监督特征选择算法。首先,该算法利用L1范数度量投影数据点与聚类标签之间的损失,引入辅助变量将聚类标签的编码矩阵的正交性与非负性分离,确保编码矩阵是非负的且更接近理想的标签;其次,利用余弦相似度方法构造特征的冗余度矩阵,并将其作为正则项约束来学习投影矩阵;最后,通过L_(2,0)范数约束投影矩阵,可以恰好得到它的k个非零行,进而选出原始数据的k个特征。由此得到基于L_(2,0)范数约束和特征冗余度学习的稀疏无监督特征选择模型。所提算法在12个公开数据集上与10个相关算法进行比较,实验结果表明该算法在多数情况下可以选出更具判别性的特征。 展开更多
关键词 特征选择 稀疏学习 特征冗余 矩阵分解 无监督学习
下载PDF
基于图嵌入的正交局部保持投影无监督特征选择
15
作者 朱建勇 李兆祥 +2 位作者 徐彬 杨辉 聂飞平 《计算机科学》 CSCD 北大核心 2023年第S02期540-548,共9页
传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(O... 传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(Orthogonal Locality Preserving Projection Unsupervised Feature Selection via Graph Embedding,OLPPFS)算法。首先,利用能够保持数据局部几何流形结构的局部保持投影方法增强数据的线性映射能力,同时约束正交方向投影以方便数据重构;其次,通过图嵌入学习方法快速构建稀疏相似图来描述样本数据的内在结构;接着,采用l_(2,0)范数约束投影矩阵的值,准确选择指定数目的判别性特征子集;最后,针对l_(2,0)范数NP难题,设计一种有效求解l_(2,0)范数问题的无参迭代算法求解该模型。仿真结果表明了所提算法的有效性和优越性。 展开更多
关键词 无监督特征选择 正交局部保持投影 图嵌入学习 l_(2 0)范数 无参迭代算法
下载PDF
基于弱监督对比学习的弱多标记特征选择 被引量:1
16
作者 王津 谭安辉 顾沈明 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第1期85-97,共13页
多标记特征选择已被广泛应用于医疗诊断、模式识别等领域,然而现实中的数据往往存在维数灾难以及标记大量缺失等问题,现有的弱多标记特征选择算法又普遍易受缺失标记和噪声的干扰,使算法模型难以准确地选择重要特征.针对上述问题,提出... 多标记特征选择已被广泛应用于医疗诊断、模式识别等领域,然而现实中的数据往往存在维数灾难以及标记大量缺失等问题,现有的弱多标记特征选择算法又普遍易受缺失标记和噪声的干扰,使算法模型难以准确地选择重要特征.针对上述问题,提出一种用于弱多标记数据集特征选择的弱监督对比学习方法,旨在缺失和含噪声标记数据集中选择优质特征,同时挖掘少量人工标注数据中潜在的类间对比模式.该方法包括三个步骤:首先,设计一种弱监督预训练策略,通过利用实例相似性以及稀疏学习方法获取每个类标记类属属性,用于恢复缺失标记;其次,引入对比学习策略来捕获少量有标记数据的对比模式来削弱噪声数据的影响;最后,选取10组多标记数据集以及四个评价指标进行实验.实验结果证明,与多个先进多标记特征选择算法相比,提出的方法分类性能更优. 展开更多
关键词 多标记学习 特征选择 缺失标记 监督学习 对比学习
下载PDF
基于动态特征选择的恶意网络行为检测仿真
17
作者 李卫峰 冯光辉 《计算机仿真》 2024年第2期410-414,共5页
恶意网络行为检测中易受噪声数据干扰,影响检测效果。为了降低检测错误率,提出一种基于动态特征选择法的恶意网络行为检测方法。构建超融合架构,将网络数据输入到架构中,采用超融合框架中的自编码器对网络数据实行降维处理,运用改进的P... 恶意网络行为检测中易受噪声数据干扰,影响检测效果。为了降低检测错误率,提出一种基于动态特征选择法的恶意网络行为检测方法。构建超融合架构,将网络数据输入到架构中,采用超融合框架中的自编码器对网络数据实行降维处理,运用改进的PCNN模型消除数据中存在的噪声,避免检测过程受到噪声干扰,提升检测准确率。采用动态特征选择法更新网络数据的特征权重值,利用特征加权熵完成特征选择,剔除权重值小于阈值的特征数据,动态选择重要的特征分量,降低检测时间,通过聚类算法识别出恶意行为簇,完成恶意网络行为检测。实验结果表明,所提方法的检测时间短、检测准确率高、检测错误率低,可以有效保证网络运行的安全性。 展开更多
关键词 超融合架构 无监督自学习 数据降维处理 动态特征选择
下载PDF
基于自适应流形正则化自表示的无监督特征选择算法
18
作者 宋雨 许王琴 +2 位作者 李荣鹏 宋学力 肖玉柱 《重庆工商大学学报(自然科学版)》 2023年第6期44-52,共9页
针对基于流形正则化自表示(MRSR)的无监督特征选择算法直接从原始的样本空间构造相似矩阵可能会导致重构空间中样本的相似性描述得不够准确的问题,提出了基于自适应流形正则化自表示的无监督特征选择(AMRSR)算法。基于自适应流形正则化... 针对基于流形正则化自表示(MRSR)的无监督特征选择算法直接从原始的样本空间构造相似矩阵可能会导致重构空间中样本的相似性描述得不够准确的问题,提出了基于自适应流形正则化自表示的无监督特征选择(AMRSR)算法。基于自适应流形正则化自表示的无监督特征选择算法在MRSR算法的基础上通过对相似矩阵施加概率最近邻约束将相似矩阵的学习嵌入到优化过程中,在重构空间中自适应地学习样本的相似性,使得在每一次迭代中获取更加精确的样本局部几何流形结构,从而选择具有代表性且保持局部几何流形结构的特征。最后,在四个公开数据集上进行了大量的对比实验,通过将算法的特征选择结果用于K-means聚类并采取两种常见的聚类评价指标:聚类精确度和归一化互信息评价聚类效果。实验结果表明,AMRSR算法与现有的一些算法相比有更高的聚类精确度和归一化互信息,进一步表明该算法特征选择效果更好。 展开更多
关键词 无监督特征选择 自表示 流形正则化 自适应 相似矩阵
下载PDF
基于l_(2,0)范数稀疏性和模糊相似性的图优化无监督组特征选择方法
19
作者 孟田田 周水生 田昕润 《模式识别与人工智能》 EI CSCD 北大核心 2023年第1期34-48,共15页
基于图的无监督特征选择方法大多选择投影矩阵的l_(2,1)范数稀疏正则化代替非凸的l_(2,0)范数约束,然而l_(2,1)范数正则化方法根据得分高低逐个选择特征,未考虑特征的相关性.因此,文中提出基于l_(2,0)范数稀疏性和模糊相似性的图优化无... 基于图的无监督特征选择方法大多选择投影矩阵的l_(2,1)范数稀疏正则化代替非凸的l_(2,0)范数约束,然而l_(2,1)范数正则化方法根据得分高低逐个选择特征,未考虑特征的相关性.因此,文中提出基于l_(2,0)范数稀疏性和模糊相似性的图优化无监督组特征选择方法,同时进行图学习和特征选择.在图学习中,学习具有精确连通分量的相似性矩阵.在特征选择过程中,约束投影矩阵的非零行个数,实现组特征选择.为了解决非凸的l_(2,0)范数约束,引入元素为0或1的特征选择向量,将l_(2,0)范数约束问题转化为0-1整数规划问题,并将离散的0-1整数约束转化为2个连续约束进行求解.最后,引入模糊相似性因子,拓展文中方法,学习更精确的图结构.在真实数据集上的实验表明文中方法的有效性. 展开更多
关键词 无监督特征选择 0-1整数规划 图优化 稀疏学习
下载PDF
基于锚点策略的快速无监督特征选择算法
20
作者 朱建勇 徐彬 +1 位作者 杨辉 聂飞平 《传感器与微系统》 CSCD 北大核心 2023年第1期149-153,160,共6页
针对传统采用稀疏正则化方法的无监督特征选择算法相似图构建效率不高、优化过程引入正则参数等问题,提出了一种基于图学习锚点嵌入策略的快速无监督特征选择算法。利用局部保持投影思想探索数据内部几何流形结构,约束投影正交方向增强... 针对传统采用稀疏正则化方法的无监督特征选择算法相似图构建效率不高、优化过程引入正则参数等问题,提出了一种基于图学习锚点嵌入策略的快速无监督特征选择算法。利用局部保持投影思想探索数据内部几何流形结构,约束投影正交方向增强线性映射和数据重构能力;采用基于锚点策略构建原始数据相似图,快速学习相似度矩阵;通过L 2,0范数结构化稀疏投影矩阵精确选择具有代表性的特征子集;设计了一个有效迭代算法求解目标函数问题。在4个公开数据集上的对比实验表明算法的有效性。 展开更多
关键词 无监督特征选择 锚点策略 正交局部保持投影 结构化稀疏
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部