期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于三维并行多视野卷积神经网络的脑电信号情感识别
1
作者 韩新龙 高云园 马玉良 《传感技术学报》 CAS CSCD 北大核心 2024年第4期696-703,共8页
利用脑电信号识别情感状态已经成为当前的研究热门。现有的情感识别方法通常提取二维信息作样本,却忽略了包含大脑不同区域重要特征的空间信息。针对这个问题,结合脑电通道间布局和原始脑电信号中的频率相关特征,提出了基于三维并行多... 利用脑电信号识别情感状态已经成为当前的研究热门。现有的情感识别方法通常提取二维信息作样本,却忽略了包含大脑不同区域重要特征的空间信息。针对这个问题,结合脑电通道间布局和原始脑电信号中的频率相关特征,提出了基于三维并行多视野卷积神经网络(Three-dimensional Parallel Multi-field Convolutional Neural Network, TPMCNN)的脑电情感识别新方法。首先将原始脑电信号划分成多频带,并提取每个频带的微分熵(DE)特征。接着将数据按照电极传感器的位置转变成三维特征矩阵。最后采用TPMCNN网络处理所得到的矩阵。实验结果表明,利用不同频带的微分熵特征构造的三维特征矩阵,能够有效地提取多通道脑电信号中与情感识别有关的特征,所提出的并行多视野卷积神经网络能够充分发挥出深度学习的优势。实验在公开数据集DEAP上进行二分类,在唤醒和效价的准确率分别达到了97.31%和96.72%,四分类的准确率达到了97.17%,证实了所提出的方法对脑电信号情感识别的优越性能。 展开更多
关键词 情感识别 三维特征 多视野卷积神经网络 并行网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部