Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein tyrosine kinase,which is also known as Ca2 +-dependent tyrosine kinase or related adhesion focal tyrosine kinase.Pyk2 activation exerts a critical regulat...Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein tyrosine kinase,which is also known as Ca2 +-dependent tyrosine kinase or related adhesion focal tyrosine kinase.Pyk2 activation exerts a critical regulatory mechanism for various physiological processes including cytoskeleton function,regulation of cell growth and death,modulation of ion channels and multiple signaling events.However,mechanisms underlying the functional diversity of Pyk2 are not clear.A Pyk2 isoform that encodes only part of the C-terminal domain of Pyk2,named as PRNK (Pyk2-related non-kinase),acts as a dominant-negative inhibitor of Pyk2-dependent signaling by displacing Pyk2 from focal adhesions.Research on functional PRNK probably provides new potential inhibitory tool targeting Pyk2 and makes it possible to explore more of Pyk2 pathological mechanism.PRNK is a promising candidate targeting Pyk2 modulation.This review focuses on the functional investigation of Pyk2 and its structure and localization,including recent research with inhibitory strategies targeting Pyk2 by the method of PRNK.展开更多
This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multipl...This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.展开更多
A new modulator for the optical signal in a fiber based on multi-beam interference is designed.In the experiment,the distance of a couple of abutted fibers was modulated through a piezoelectric ceramic pipe driven by ...A new modulator for the optical signal in a fiber based on multi-beam interference is designed.In the experiment,the distance of a couple of abutted fibers was modulated through a piezoelectric ceramic pipe driven by 50 Hz AC voltage,so that the amplitude of the transmitted optical signal was modulated.The modulation ratio is about 10%,S/N ratio is about 60 dB and the bandwidth is about 200 KHz.展开更多
Linear Modulated Frequency (LMF) Costas Stepped Frequency Radar (SFR) signal is introduced. Its ambiguity function is derived and analyzed in detail and its feasibility is validated in theory. The scheme of the propos...Linear Modulated Frequency (LMF) Costas Stepped Frequency Radar (SFR) signal is introduced. Its ambiguity function is derived and analyzed in detail and its feasibility is validated in theory. The scheme of the proposed signal processing is also presented. The results of theoretic analysis and simulation show that, by using the proposed signal and increasing the bandwidth of the total stepped frequency, the ambiguity sidelobe is well suppressed and the range-velocity coupling in the stepped frequency radar is also greatly weakened.展开更多
The active transmission of information from sender to receiver is a fundamental component of communication, and is therefore a primary facet in evolutionary models of sexual selection. Research in several systems has ...The active transmission of information from sender to receiver is a fundamental component of communication, and is therefore a primary facet in evolutionary models of sexual selection. Research in several systems has underlined the importance of multiple sensory modalities in courtship signals. However, we still tend to think of individuals as having a relatively static signal in consecutive communicative events. While this may be true for certain traits such as body size or coloration, behaviorally modulated signals can quickly violate this assumption. In this work, we explore how intraspecific variation may be an important component of interspecific signal divergence using cichlid fishes from Lake Malawi. Behavioral analyses were made using six species of Malawian cichlids from two divergent genera. While interspecific differences were found between congeners based on species-level analyses of both acoustic and audiovisual signals, intraspecific variation was of a similar magnitude. Specifically, individual fishes were found to possess highly plastic signal repertoires. This finding was ubiquitous across all species and resuited in a great deal of overlap between heterospecific individuals, despite statistically distinct species means. These results demonstrate that some aspects of courtship in Malawian cichlids are more plastic than previously proposed, and that studies must account for signal variability within individuals. We propose here that behavioral variability in signaling is important in determining the communication landscape on which signals are perceived. We review potential complexity deriving from multimodal signaling, discuss the sources for such lability, and suggest ways in which this issue may be approached experimentally .展开更多
基金Supported by the National Natural Science Foundation of China(30700822)
文摘Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein tyrosine kinase,which is also known as Ca2 +-dependent tyrosine kinase or related adhesion focal tyrosine kinase.Pyk2 activation exerts a critical regulatory mechanism for various physiological processes including cytoskeleton function,regulation of cell growth and death,modulation of ion channels and multiple signaling events.However,mechanisms underlying the functional diversity of Pyk2 are not clear.A Pyk2 isoform that encodes only part of the C-terminal domain of Pyk2,named as PRNK (Pyk2-related non-kinase),acts as a dominant-negative inhibitor of Pyk2-dependent signaling by displacing Pyk2 from focal adhesions.Research on functional PRNK probably provides new potential inhibitory tool targeting Pyk2 and makes it possible to explore more of Pyk2 pathological mechanism.PRNK is a promising candidate targeting Pyk2 modulation.This review focuses on the functional investigation of Pyk2 and its structure and localization,including recent research with inhibitory strategies targeting Pyk2 by the method of PRNK.
文摘This paper presents a new method of High Resolution Range (HRR) profile formation based on Linear Frequency Modulation (LFM) signal fusion of multiple radars with multiple frequency bands. The principle of the multiple radars signal fusion improving the range resolution is analyzed. With the analysis of return signals received by two radars,it is derived that the phase difference between the echoes varies almost linearly with respect to the frequency if the distance between two radars is neg-ligible compared with the radar observation distance. To compensate the phase difference,an en-tropy-minimization principle based compensation algorithm is proposed. During the fusion process,the B-splines interpolation method is applied to resample the signals for Fourier transform imaging. The theoretical analysis and simulations results show the proposed method can effectively increase signal bandwidth and provide a high resolution range profile.
基金Supported by the National Nature Science Foundation of China(Grant No.60208002) the Undergraduate Innovation Projecof Nankai University.
文摘A new modulator for the optical signal in a fiber based on multi-beam interference is designed.In the experiment,the distance of a couple of abutted fibers was modulated through a piezoelectric ceramic pipe driven by 50 Hz AC voltage,so that the amplitude of the transmitted optical signal was modulated.The modulation ratio is about 10%,S/N ratio is about 60 dB and the bandwidth is about 200 KHz.
文摘Linear Modulated Frequency (LMF) Costas Stepped Frequency Radar (SFR) signal is introduced. Its ambiguity function is derived and analyzed in detail and its feasibility is validated in theory. The scheme of the proposed signal processing is also presented. The results of theoretic analysis and simulation show that, by using the proposed signal and increasing the bandwidth of the total stepped frequency, the ambiguity sidelobe is well suppressed and the range-velocity coupling in the stepped frequency radar is also greatly weakened.
文摘The active transmission of information from sender to receiver is a fundamental component of communication, and is therefore a primary facet in evolutionary models of sexual selection. Research in several systems has underlined the importance of multiple sensory modalities in courtship signals. However, we still tend to think of individuals as having a relatively static signal in consecutive communicative events. While this may be true for certain traits such as body size or coloration, behaviorally modulated signals can quickly violate this assumption. In this work, we explore how intraspecific variation may be an important component of interspecific signal divergence using cichlid fishes from Lake Malawi. Behavioral analyses were made using six species of Malawian cichlids from two divergent genera. While interspecific differences were found between congeners based on species-level analyses of both acoustic and audiovisual signals, intraspecific variation was of a similar magnitude. Specifically, individual fishes were found to possess highly plastic signal repertoires. This finding was ubiquitous across all species and resuited in a great deal of overlap between heterospecific individuals, despite statistically distinct species means. These results demonstrate that some aspects of courtship in Malawian cichlids are more plastic than previously proposed, and that studies must account for signal variability within individuals. We propose here that behavioral variability in signaling is important in determining the communication landscape on which signals are perceived. We review potential complexity deriving from multimodal signaling, discuss the sources for such lability, and suggest ways in which this issue may be approached experimentally .