期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例 被引量:1
1
作者 刘炜 孙海霞 杨晓波 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2020年第1期99-110,共12页
提出协同分层波谱识别法,分别从兰州、榆林市Hyperion高光谱图像上识别9种目标地类,并与SVM监督分类对比。针对Hyperion图像波谱识别的4个难点:光谱信息高保真融合、敏感谱段提取、"椒盐效应"去除、消除"同物异谱"... 提出协同分层波谱识别法,分别从兰州、榆林市Hyperion高光谱图像上识别9种目标地类,并与SVM监督分类对比。针对Hyperion图像波谱识别的4个难点:光谱信息高保真融合、敏感谱段提取、"椒盐效应"去除、消除"同物异谱"现象导致的误判,协同应用WP-GS融合、导数变换、4尺度面向对象分割和多谱段SAM解决上述难点,并基于Hyperion导数变换图像分析波谱变化特征、提取敏感谱段、从4个尺度层依次识别9种目标地类,然后根据目视评判和定量评价,与综合使用Gram-Schmidt光谱锐化融合/Savitzky-Golay卷积滤波/PCA变换的SVM监督分类结果比较识别精度。实验结果表明WP-GS融合的光谱保真效果优于Gram-Schmidt光谱锐化;4尺度面向对象分割抑制"椒盐效应"的效果优于Savitzky-Golay卷积滤波、移动均值滤波;多谱段SAM利用导数波谱特征能够消除因照度不同对同一类别地物的误判。采用协同分层波谱识别法,兰州市Hyperion图像波谱识别的总体精度、Kappa系数分别为89.52%、0.852,较SVM分类分别提高18.68%和17.52%;榆林市Hyperion图像识别地物的总体精度、Kappa系数分别为91.12%、0.873,较SVM分类分别提高17.80%和16.89%。协同分层波谱识别法应用多种技术一体化解决Hyperion图像应用难点,有效利用导数波谱变化特征提取目标敏感谱段,在复杂环境下识别目标地类的能力优于SVM监督分类。 展开更多
关键词 星载高光图像 导数波特征 敏感 同物异 多尺度 多谱段sam
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部