A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively....A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method,the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then,the IMFs and residual are classified into noise terms,mixed terms,and useful terms according to a combined classification criterion.Finally,the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent,thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.展开更多
In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estima- tion under the restriction that the number of receivers is less than that of the array elements in an array antenna. To sol...In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estima- tion under the restriction that the number of receivers is less than that of the array elements in an array antenna. To solve the conundrum, a method named subarray-synthesis-based Two-Dimensional DOA (2D DOA) angle estimation is proposed. In the method, firstly, the array antenna is divided into a series of subarray antennas based on the total number of receivers; secondly, the subarray antennas’ output covariance matrices are esti- mated; thirdly, an equivalent covariance matrix is synthesized based on the subarray output covariance matri- ces; then 2D DOA estimation is performed. Monte Carlo simulations showed that the estimation method is ef- fective.展开更多
基金The National Natural Science Foundation of China(No.41974030)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX17_0150).
文摘A filter method that combines ensemble empirical modal decomposition(EEMD)and wavelet analysis methods was proposed to separate and correct the global navigation satellite system(GNSS)multipath error more effectively.In this method,the GNSS signal is first decomposed into several intrinsic mode functions(IMFs)and a residual through EEMD.Then,the IMFs and residual are classified into noise terms,mixed terms,and useful terms according to a combined classification criterion.Finally,the mixed term denoised by wavelet and the useful term are reconstructed to obtain the multipath error and thus enable an error correction model to be built.The measurement data provided by the Curtin GNSS Research Center were used for processing and analysis.Results show that the proposed method can separate multipath error from GNSS data to a great extent,thereby effectively addressing the defects of EEMD and wavelet methods on multipath error weakening.The error correction model established with the separated multipath error has a higher accuracy and provides a certain reference value for research on related signal processing.
基金Supported by the National Natural Science Foundation of China (No.60462002 and No.60302006).
文摘In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estima- tion under the restriction that the number of receivers is less than that of the array elements in an array antenna. To solve the conundrum, a method named subarray-synthesis-based Two-Dimensional DOA (2D DOA) angle estimation is proposed. In the method, firstly, the array antenna is divided into a series of subarray antennas based on the total number of receivers; secondly, the subarray antennas’ output covariance matrices are esti- mated; thirdly, an equivalent covariance matrix is synthesized based on the subarray output covariance matri- ces; then 2D DOA estimation is performed. Monte Carlo simulations showed that the estimation method is ef- fective.