期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
轨交末班车可达多路径换乘算法的研究与实现 被引量:7
1
作者 彭益兵 苏厚勤 何晋川 《计算机应用研究》 CSCD 北大核心 2010年第4期1373-1375,1379,共4页
为解决城市轨道交通路网晚间换乘末班车期间,无法赶乘末班车,提出、设计和实现了关于晚间末班车换乘最佳多路径可达性判断算法,有效避免了晚间换乘不可达的事件发生。基于上海城市轨道交通路网目前的拓扑结构和晚间末班车时刻表,验证了... 为解决城市轨道交通路网晚间换乘末班车期间,无法赶乘末班车,提出、设计和实现了关于晚间末班车换乘最佳多路径可达性判断算法,有效避免了晚间换乘不可达的事件发生。基于上海城市轨道交通路网目前的拓扑结构和晚间末班车时刻表,验证了所提算法的正确性和实用性。 展开更多
关键词 城市轨道交通路网 换乘 末班车 简化建模 背离路径 最佳多路径搜索算法
下载PDF
基于模糊多目标决策理论的军事运输路径优化研究 被引量:21
2
作者 石玉峰 门志强 《交通运输工程与信息学报》 2004年第1期112-116,共5页
本文以军事运输的路径优化为研究对象,采用基于路段重叠惩罚的多路径搜索算法建立路径决策集;用模糊多目标决策理论从时间、危险性、保障代价三个方面来构造军事运输路径优化决策算法;最后,本文还给出了算法实例。
关键词 军事运输 路径优化 模糊理论 多目标决策 多路径搜索算法
下载PDF
A Modified Self-Adaptive Sparrow Search Algorithm for Robust Multi-UAV Path Planning
3
作者 SUN Zhiyuan SHEN Bo +2 位作者 PAN Anqi XUE Jiankai MA Yuhang 《Journal of Donghua University(English Edition)》 CAS 2024年第6期630-643,共14页
With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execu... With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execution,it is a nonlinear problem with constraints.Traditional optimization algorithms have difficulty in finding the optimal solution that minimizes the cost function under various constraints.At the same time,robustness should be taken into account to ensure the reliable and safe operation of the UAVs.In this paper,a self-adaptive sparrow search algorithm(SSA),denoted as DRSSA,is presented.During optimization,a dynamic population strategy is used to allocate the searching effort between exploration and exploitation;a t-distribution perturbation coefficient is proposed to adaptively adjust the exploration range;a random learning strategy is used to help the algorithm from falling into the vicinity of the origin and local optimums.The convergence of DRSSA is tested by 29 test functions from the Institute of Electrical and Electronics Engineers(IEEE)Congress on Evolutionary Computation(CEC)2017 benchmark suite.Furthermore,a stochastic optimization strategy is introduced to enhance safety in the path by accounting for potential perturbations.Two sets of simulation experiments on multi-UAV path planning in three-dimensional environments demonstrate that the algorithm exhibits strong optimization capabilities and robustness in dealing with uncertain situations. 展开更多
关键词 multiple unmanned aerial vehicle(multi-UAV) path planning sparrow search algorithm(SSA) stochastic optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部