针对无线传感器网络路由协议LEACH(Low Energy Adaptive Clustering Hierarchy)存在能耗不均衡的问题,提出一种改进的路由协议LEACH-EM(LEACH-Energy and Multi-hop routing)。该算法修改了选取簇首的阈值,使节点能根据自身剩余能量动...针对无线传感器网络路由协议LEACH(Low Energy Adaptive Clustering Hierarchy)存在能耗不均衡的问题,提出一种改进的路由协议LEACH-EM(LEACH-Energy and Multi-hop routing)。该算法修改了选取簇首的阈值,使节点能根据自身剩余能量动态调整其轮转周期,同时在簇间引入多跳路由机制,使距离基站较远的簇首能耗得到均衡,由此平衡整个网络负载。仿真实验表明,LEACH-EM算法在能耗均衡上得到了改善,在网络生命周期中,LEACH-EM算法比LEACH延长了38.8%。展开更多
Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in commu...Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.展开更多
The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot s...The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot spot”problem in WSNs,we propose an unequal clustering routing algorithm based on genetic algorithm(UCR-GA).In the cluster head election phase,the fitness function is constructed based on the residual energy,density and distance between nodes and base station,and the appropriate node is selected as the cluster head.In the data transmission phase,the cluster head selects single-hop or multi-hop communication mode according to the distance to the base station.After we comprehensively consider the residual energy of the cluster head and its communication energy consumption with the base station,an appropriate relay node is selected.The designed protocal is simulated under energy homogeneous and energy heterogeneity conditions,and the results show that the proposed routing protocal can effectively balance energy consumption,prolong the life cycle of network,and is appicable to heterogeneous networks.展开更多
In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper...In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.展开更多
文摘针对无线传感器网络路由协议LEACH(Low Energy Adaptive Clustering Hierarchy)存在能耗不均衡的问题,提出一种改进的路由协议LEACH-EM(LEACH-Energy and Multi-hop routing)。该算法修改了选取簇首的阈值,使节点能根据自身剩余能量动态调整其轮转周期,同时在簇间引入多跳路由机制,使距离基站较远的簇首能耗得到均衡,由此平衡整个网络负载。仿真实验表明,LEACH-EM算法在能耗均衡上得到了改善,在网络生命周期中,LEACH-EM算法比LEACH延长了38.8%。
基金Supported by the National Natural Science Foundation of China (No. 60672059, 60496315 )the National High Technology Research and Development Programme of China (No.2006AA01Z233)
文摘Because of different system capacities of base station (BS) or access point (AP) and ununiformity of traffic distribution in different cells, quantities of new call users may be blocked in overloaded cell in communication hot spots. Whereas in some neighboring under-loaded cells, bandwidth may be superfluous because there are only few users to request services. In order to raise resource utilization of the whole heterogeneous networks, several novel load balancing strategies are proposed, which combine the call ad- mission control policy and multi-hop routing protocol of ad-hoc network for load balancing. These loadbalancing strategies firstly make a decision whether to admit a new call or not by considering some parameters like load index and route cost, etc., and then transfer the denied users into neighboring under-loaded cell with surplus channel according to optimum multi-hop routing algorithm. Simulation results show that the proposed load balancing strategies can distribute traffics to the whole heterogeneous wireless netorks, improve the load balance index efficiently, and avoid the call block phenomenon almost absolutely.
基金National Natural Science Foundation of China(No.61862038)Lanzhou Talent Innovation and Entrepreneurship Technology Plan Project(No.2019-RC-14)Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘The imbalance of energy consumption in wireless sensor networks(WSNs)easily results in the“hot spot”problem that the sensor nodes in a particular area die due to fast energy consumption.In order to solve the“hot spot”problem in WSNs,we propose an unequal clustering routing algorithm based on genetic algorithm(UCR-GA).In the cluster head election phase,the fitness function is constructed based on the residual energy,density and distance between nodes and base station,and the appropriate node is selected as the cluster head.In the data transmission phase,the cluster head selects single-hop or multi-hop communication mode according to the distance to the base station.After we comprehensively consider the residual energy of the cluster head and its communication energy consumption with the base station,an appropriate relay node is selected.The designed protocal is simulated under energy homogeneous and energy heterogeneity conditions,and the results show that the proposed routing protocal can effectively balance energy consumption,prolong the life cycle of network,and is appicable to heterogeneous networks.
基金supported by the National Natural Science Foundation of China under Grants No.60972038,No.61001077,No.61101105 the Scientific Research Foundation for Nanjing University of Posts and Telecommunications under Grant No.NY211007+2 种基金 the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2011D05 Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20113223120002 University Natural Science Research Project of Jiangsu Province under Grant No.11KJB510016
文摘In wireless multimedia communications, it is extremely difficult to derive general end-to-end capacity results because of decentralized packet scheduling and the interference between communicating nodes. In this paper, we present a state-based channel capacity perception scheme to provide statistical Quality-of-Service (QoS) guarantees under a medium or high traffic load for IEEE 802.11 wireless multi-hop networks. The proposed scheme first perceives the state of the wireless link from the MAC retransmission information and extends this information to calculate the wireless channel capacity, particularly under a saturated traffic load, on the basis of the interference among flows and the link state in the wireless multi-hop networks. Finally, the adaptive optimal control algorithm allocates a network resource and forwards the data packet by taking into consideration the channel capacity deployments in multi-terminal or multi-hop mesh networks. Extensive computer simulations demonstrate that the proposed scheme can achieve better performance in terms of packet delivery ratio and network throughput compared to the existing capacity prediction schemes.