In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD ...In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD is applied to the feature extraction of vehicle vibration signals. First, the multi-autocorrelation method is adopted in each input signal,so the noise is reduced effectively. Then, EMD is used to deal with these signals,and the intrinsic mode functions (IMFs) are obtained. Finally, for obtaining the feature information of these signals, the Hilbert transformation and the spectrum analysis are performed in some IMFs. Theoretical analysis and ex- periment verify the effectiveness of the method, which are valuable reference for the same engineering problems.展开更多
Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity...Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.展开更多
In order to improve the operational efficiency of heavy left-turn demand intersections,an optimal allocation model of an intersection with dynamic use of exit lanes for left turns(EFL)is proposed.The constraints of se...In order to improve the operational efficiency of heavy left-turn demand intersections,an optimal allocation model of an intersection with dynamic use of exit lanes for left turns(EFL)is proposed.The constraints of setting EFL are analyzed,including the number and length of reverse variable lanes,flow direction constraints,and signal constraints,etc.The constraints and control variables are combined in a unified framework for simultaneous optimization.The objective functions are defined as the average delay and left-turn capacity of an intersection.The model is solved by a non-dominated genetic algorithm(NSGA-Ⅱ).The results show that after the optimal allocation of EFL,the average vehicle delays of the intersection can be reduced by 14.9%and left-turn capacity can be increased by 19.3%.The effectiveness of the optimal allocation model of EFL is demonstrated.展开更多
Colorful visual signals are important systems for investigating the effects of signaling environ ments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory ...Colorful visual signals are important systems for investigating the effects of signaling environ ments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory drive hypothesis on color signal evolution is mostly based on document ing correlations between the properties of signals and habitat conditions under which the signals are given (i.e., a correlational approach) and less commonly on the use of mathematical models that integrate representations of visual environments, signal properties, and sensory systems (i.e., a functional approach). Here, we used an experimental approach in the field to evaluate signal efficacy of colorful lizard throat fans called dewlaps that show geographic variation in the lizard Anolis cristatellus. We used a remote controlled apparatus to display "fake dewlaps" to wild lizards to test for adaptive divergence in dewlap brightness (i.e., perceived intensity) among populations in situ. We found evidence of local adaptation in dewlap brightness consistent with the sensory drive hypothesis. Specifically, dewlaps that had the brightness characteristics of local lizards were more likely to be detected than those with the brightness characteristics of nonlocal lizards. Our findings indicate that simplified mathematical representations of visual environments may allow robust estimates of relative detectability or conspicuousness in natural habitats. We have shown the feasibility of evaluating color signal efficacy experimentally under natural conditions and dem onstrate the potential advantages of presenting isolated components of signals to an intended re ceiver to measure their contribution to signal function.展开更多
基金Supported by the Scientific Research Foundation for the Imported Talents(YKJ201014)~~
文摘In order to truly obtain the feature extraction of vibration signals under the strong background noise, the analysis and improvement of empirical mode decomposition (EMD) is carried on. After that, the improved EMD is applied to the feature extraction of vehicle vibration signals. First, the multi-autocorrelation method is adopted in each input signal,so the noise is reduced effectively. Then, EMD is used to deal with these signals,and the intrinsic mode functions (IMFs) are obtained. Finally, for obtaining the feature information of these signals, the Hilbert transformation and the spectrum analysis are performed in some IMFs. Theoretical analysis and ex- periment verify the effectiveness of the method, which are valuable reference for the same engineering problems.
基金Supported by the National Natural Science Foundation of China(50478071)
文摘Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.
基金The Natural Science Foundation of Jilin Province(No.20190201107JC)the National Key Research and Development Program of China(No.2019YFB1600500)。
文摘In order to improve the operational efficiency of heavy left-turn demand intersections,an optimal allocation model of an intersection with dynamic use of exit lanes for left turns(EFL)is proposed.The constraints of setting EFL are analyzed,including the number and length of reverse variable lanes,flow direction constraints,and signal constraints,etc.The constraints and control variables are combined in a unified framework for simultaneous optimization.The objective functions are defined as the average delay and left-turn capacity of an intersection.The model is solved by a non-dominated genetic algorithm(NSGA-Ⅱ).The results show that after the optimal allocation of EFL,the average vehicle delays of the intersection can be reduced by 14.9%and left-turn capacity can be increased by 19.3%.The effectiveness of the optimal allocation model of EFL is demonstrated.
文摘Colorful visual signals are important systems for investigating the effects of signaling environ ments and receiver physiology on signal evolution as predicted by the sensory drive hypothesis. Support for the sensory drive hypothesis on color signal evolution is mostly based on document ing correlations between the properties of signals and habitat conditions under which the signals are given (i.e., a correlational approach) and less commonly on the use of mathematical models that integrate representations of visual environments, signal properties, and sensory systems (i.e., a functional approach). Here, we used an experimental approach in the field to evaluate signal efficacy of colorful lizard throat fans called dewlaps that show geographic variation in the lizard Anolis cristatellus. We used a remote controlled apparatus to display "fake dewlaps" to wild lizards to test for adaptive divergence in dewlap brightness (i.e., perceived intensity) among populations in situ. We found evidence of local adaptation in dewlap brightness consistent with the sensory drive hypothesis. Specifically, dewlaps that had the brightness characteristics of local lizards were more likely to be detected than those with the brightness characteristics of nonlocal lizards. Our findings indicate that simplified mathematical representations of visual environments may allow robust estimates of relative detectability or conspicuousness in natural habitats. We have shown the feasibility of evaluating color signal efficacy experimentally under natural conditions and dem onstrate the potential advantages of presenting isolated components of signals to an intended re ceiver to measure their contribution to signal function.