期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
城市交通网多车类备用能力模型与算法
1
作者 黄亚飞 刘伟铭 《长沙理工大学学报(自然科学版)》 CAS 2008年第2期25-31,共7页
考虑城市混合交通中公交车流的特殊性而建立了最优信号控制下的多车类备用能力模型来研究不同车类交通流之间的相互作用及对路网备用能力的影响.设计了带极值扰动的简化粒子群求解算法(dsP-SO),模型约束的处理采用边界附近不可行解部分... 考虑城市混合交通中公交车流的特殊性而建立了最优信号控制下的多车类备用能力模型来研究不同车类交通流之间的相互作用及对路网备用能力的影响.设计了带极值扰动的简化粒子群求解算法(dsP-SO),模型约束的处理采用边界附近不可行解部分保留的方式,给出的算例验证了该算法求解约束双层规划模型的有效性.研究结果表明,起—讫点(OD)总流量的增减不意味着该OD上所有车类流量都随之增减,设置适当的最小OD需求量乘子能确保各车类用户的利益不受损害. 展开更多
关键词 交通工程 多车类 备用能力 信号控制 粒子群算法
下载PDF
Length-Based Vehicle Classification in Multi-lane Traffic Flow 被引量:1
2
作者 于洋 于明 +1 位作者 阎刚 翟艳东 《Transactions of Tianjin University》 EI CAS 2011年第5期362-368,共7页
For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated back... For the realtime classification of moving vehicles in the multi-lane traffic video sequences, a length-based method is proposed. To extract the moving regions of interest, the difference image between the updated background and current frame is obtained by using background subtraction, and then an edge-based shadow removal algorithm is implemented. Moreover, a tbresholding segmentation method for the region detection of moving vehicle based on lo- cation search is developed. At the estimation stage, a registration line is set up in the detection area, then the vehicle length is estimated with the horizontal projection technique as soon as the vehicle leaves the registration line. Lastly, the vehicle is classified according to its length and the classification threshold. The proposed method is different from traditional methods that require complex camera calibrations. It calculates the pixel-based vehicle length by using uncalibrated traffic video sequences at lower computational cost. Furthermore, only one registration line is set up, which has high flexibility. Experimental results of three traffic video sequences show that the classification accuracies for the large and small vehicles are 97.1% and 96.7% respectively, which demonstrates the effectiveness of the proposed method. 展开更多
关键词 image processing background subtraction vehicle classification virtual line horizontal projection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部