Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of greas...Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of grease-lubricated rolling bearings is often dominated by grease life. When designing a bearing systemolecular weightith grease lubrication, it is necessary to define the operating conditions limits of the bearing, for which grease life becomes a determining factor. Prolongation of grease life becomes an especially important challenge when the bearing is to be operated trader high-speed, high-temperature, and other severe conditions. Selecting a number of commercially sold greases composed of varying base oils, the author evaluated their properties and analyzed how each property affected the grease life by performing a multiple regression analysis. The optimum grease composition to best exploit each property was also examined. The results revealed among others that one would need to first determine the base oil type and then maximize ultimate bleeding while minimizing the evaporation rate.展开更多
Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile ...Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile damage and shear damage variable for compressive damage,are adopted to represent the influence of microscopic damage on material macromechanics properties under tensile and compressive loadings.The yield criteria and flow rule determining the plasticity of concrete are established in the effective stress space,which is convenient to decouple the damage process from the plastic process and calibrate material parameters with experimental results.Meanwhile,the plastic part of the proposed model can be implemented by back-Euler implicit algorithm,and the damage part is explicit.Consequently,there exist robust algorithms for integrating the constitutive relations using finite element method.Comparison with several experimental results shows that the model is capable of simulating the nonlinear performance of concrete under multiaxial stress state and can be applied to practical concrete structures.展开更多
In order to understand the breakup performance of coaxial porous injectors,the sprays of coaxial porous injectors with two different porous material cylinder lengths were compared with those of conventional shear coax...In order to understand the breakup performance of coaxial porous injectors,the sprays of coaxial porous injectors with two different porous material cylinder lengths were compared with those of conventional shear coaxial injectors.To allow comparison,the wall injection lengths were designed to be equivalent to the value of the recess depth.Cold flow sprays were visualized using back-lit photography methods and analyzed quantitatively with a laser diffraction apparatus,in order to study the effects of the momentum flux ratio and Weber number on the breakup for each type of injector.In case of the shear coaxial injector,the large liquid core was observed in low air mass flow rate condition.However,the destabilization of the liquid jet from the coaxial porous injector is almost complete within the inner region,near the injector face plate.Additionally,better breakup performance in low gas flow rate condition was obtained when the porous cylinder length decreased,while the shear coaxial injectors showed better breakup efficiency when the recess length increased.In conclusion,the different breakup process caused by the radial momentum in the inner region of the porous injector disintegrated the liquid core.展开更多
Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportio...Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportions, which corresponds to three different uniaxial compressive strengths. The cubic specimens with size of 100 mm for each edge were tested with servo-hydraulic actuators at different stress ratios. The principal stresses and strains of the specimens were recorded, and the failure of the cubic specimens under various stress states was examined. The experimental results indicated that the stress states and stress ratios had significant influence on the strength and deformation of HPC under biaxial and triaxial compression, especially under triaxial compression. Failure criteria were proposed for the HPC specimens under biaxial and triaxial compressive loading. The test results provided a valuable reference for obtaining multi-axial constitutive law for HPC.展开更多
文摘Grease life refers to the time it takes for the grease to lose its ability to keep the lubrication due to grease degradation. As grease life is generally shorter than fatigue life of bearing, the service life of grease-lubricated rolling bearings is often dominated by grease life. When designing a bearing systemolecular weightith grease lubrication, it is necessary to define the operating conditions limits of the bearing, for which grease life becomes a determining factor. Prolongation of grease life becomes an especially important challenge when the bearing is to be operated trader high-speed, high-temperature, and other severe conditions. Selecting a number of commercially sold greases composed of varying base oils, the author evaluated their properties and analyzed how each property affected the grease life by performing a multiple regression analysis. The optimum grease composition to best exploit each property was also examined. The results revealed among others that one would need to first determine the base oil type and then maximize ultimate bleeding while minimizing the evaporation rate.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51139001,51179066,51079046)the Program for New Century Excellent Talents in University (Grant Nos. NCET-11-0628,NCET-10-0359)+1 种基金the Special Fund of State Key Laboratory of China(Grant Nos. 2009586012,2009586912,2010585212)the Fundamental Research Funds for the Central Universities (Grant Nos. 2010B20414,2010B01414,2010B14114)
文摘Based on the concepts of continuum damage theory,a new plastic damage model for concrete crack failure is developed through studying the basic damage mechanics.Two damage variables,tensile damage variable for tensile damage and shear damage variable for compressive damage,are adopted to represent the influence of microscopic damage on material macromechanics properties under tensile and compressive loadings.The yield criteria and flow rule determining the plasticity of concrete are established in the effective stress space,which is convenient to decouple the damage process from the plastic process and calibrate material parameters with experimental results.Meanwhile,the plastic part of the proposed model can be implemented by back-Euler implicit algorithm,and the damage part is explicit.Consequently,there exist robust algorithms for integrating the constitutive relations using finite element method.Comparison with several experimental results shows that the model is capable of simulating the nonlinear performance of concrete under multiaxial stress state and can be applied to practical concrete structures.
基金supported by a National Research Foundation of Korea(NRF)grant funded by the Korean Government(Ministry of Science,ICT and Future Planning)(No.NRF-2012M 1A3A3A02033146 and NRF-2013RlA5A1073861 through the SPRC of Seoul National University)
文摘In order to understand the breakup performance of coaxial porous injectors,the sprays of coaxial porous injectors with two different porous material cylinder lengths were compared with those of conventional shear coaxial injectors.To allow comparison,the wall injection lengths were designed to be equivalent to the value of the recess depth.Cold flow sprays were visualized using back-lit photography methods and analyzed quantitatively with a laser diffraction apparatus,in order to study the effects of the momentum flux ratio and Weber number on the breakup for each type of injector.In case of the shear coaxial injector,the large liquid core was observed in low air mass flow rate condition.However,the destabilization of the liquid jet from the coaxial porous injector is almost complete within the inner region,near the injector face plate.Additionally,better breakup performance in low gas flow rate condition was obtained when the porous cylinder length decreased,while the shear coaxial injectors showed better breakup efficiency when the recess length increased.In conclusion,the different breakup process caused by the radial momentum in the inner region of the porous injector disintegrated the liquid core.
基金supported by the National Natural Science Foundation of China(Grant No.51278118)the National Basic Research Program of China("973"Project)(Grant No.2009CB623200)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Experimental investigation was conducted to characterize the responses of high performance concrete(HPC) subjected to multiaxial compressive stresses. The HPC specimens were prepared with three different mix proportions, which corresponds to three different uniaxial compressive strengths. The cubic specimens with size of 100 mm for each edge were tested with servo-hydraulic actuators at different stress ratios. The principal stresses and strains of the specimens were recorded, and the failure of the cubic specimens under various stress states was examined. The experimental results indicated that the stress states and stress ratios had significant influence on the strength and deformation of HPC under biaxial and triaxial compression, especially under triaxial compression. Failure criteria were proposed for the HPC specimens under biaxial and triaxial compressive loading. The test results provided a valuable reference for obtaining multi-axial constitutive law for HPC.