普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积...普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积单元问题(Modifiable areal unit problem,MAUP)特征,设计了一种该类数据空间分析不确定性的研究方法,采用不同的尺度(Scale)及分区(Zoning)系统对多边形的统计数据空间分析的准确性进行了分析。实验引入尺度与形态指数,利用可视化分析和数据拟合的研究方法,对尺度及分区对空间分析结果的影响模式进行了模拟。研究结果表明:(1)以统计小区的空间分析,其结果受统计小区空间形态的影响较大,不确定性强,不能充分反映统计数据本身的空间特征;(2)规则格网能较好地保持原始统计数据的空间分布特征,但仍然受尺度及分区影响;(3)规则格网的空间分析结果及其准确性与尺度有较好的拟合关系,不同尺度下的分析结果不确定性是原始数据不同尺度特征的体现;(4)分区效应受空间分析方法的计算尺度影响,两者共同对空间分析结果产生影响。对于固定尺度的规则格网,其邻接多边形数目是分析结果不确定的主要原因。本文研究结果表明,在多边形统计数据空间分析时,应该对其使用规则格网重新聚合,并根据实际应用的需求选择多尺度分析方法,以达到实际应用目的。展开更多
文摘普查数据是地理学空间分析的重要数据源。由于受到数据与计算机处理能力的限制,以往的研究对普查数据空间分析的不确定性未给予足够重视,也未形成成熟的研究方法。在建筑物单元的人口普查数据支持下,本文基于多边形统计数据的可塑面积单元问题(Modifiable areal unit problem,MAUP)特征,设计了一种该类数据空间分析不确定性的研究方法,采用不同的尺度(Scale)及分区(Zoning)系统对多边形的统计数据空间分析的准确性进行了分析。实验引入尺度与形态指数,利用可视化分析和数据拟合的研究方法,对尺度及分区对空间分析结果的影响模式进行了模拟。研究结果表明:(1)以统计小区的空间分析,其结果受统计小区空间形态的影响较大,不确定性强,不能充分反映统计数据本身的空间特征;(2)规则格网能较好地保持原始统计数据的空间分布特征,但仍然受尺度及分区影响;(3)规则格网的空间分析结果及其准确性与尺度有较好的拟合关系,不同尺度下的分析结果不确定性是原始数据不同尺度特征的体现;(4)分区效应受空间分析方法的计算尺度影响,两者共同对空间分析结果产生影响。对于固定尺度的规则格网,其邻接多边形数目是分析结果不确定的主要原因。本文研究结果表明,在多边形统计数据空间分析时,应该对其使用规则格网重新聚合,并根据实际应用的需求选择多尺度分析方法,以达到实际应用目的。