期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多近似模型的交互式遗传算法 被引量:4
1
作者 巩敦卫 周勇 郭一楠 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第3期434-438,共5页
人的疲劳问题是交互式遗传算法的核心问题,它制约了交互式遗传算法在复杂优化问题中的应用.为了解决该问题,本文提出基于多近似模型的交互式遗传算法.该算法首先将搜索空间划分,然后利用传统交互式遗传算法得到的数据,在不同子空间生成... 人的疲劳问题是交互式遗传算法的核心问题,它制约了交互式遗传算法在复杂优化问题中的应用.为了解决该问题,本文提出基于多近似模型的交互式遗传算法.该算法首先将搜索空间划分,然后利用传统交互式遗传算法得到的数据,在不同子空间生成不同的近似模型,最后采用该模型近似人对进化个体的评价,从而减少人评价的数量,有效解决人的疲劳问题.算法性能分析及在服装进化设计系统中的应用验证了其有效性. 展开更多
关键词 遗传算法 交互 多近似模型 服装设计
下载PDF
Adiabatic and Non-Adiabatic Berry Phases in Generalized J-C Model of Multi-Photon Process 被引量:1
2
作者 刘妮 王月明 梁九卿 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第8期271-274,共4页
We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the par... We derive the adiabatic and non-adiabatic Berry phases in the generalized Jaynes-Cummings model of multi-photon process. The results show that the adiabatic Berry phase is kept a constant π independent of all the parameters, while the non-adiabatic approximate Berry phase is parameter-dependent, proportional to the average photon number m, and tends to be constant with the increasing detuning. In the ease of exact n-photon resonance and an integer ratio of m/n, the two results coincide with each other, otherwise there appears an additional non-trivial phase factor. 展开更多
关键词 generalized J-C model multi-photon process Berry phase NON-ADIABATIC gauge transformation
原文传递
A numerical method for solutions of Lotka-Volterra predator-prey model with time-delay
3
作者 Suayip Yiizbasl Murat Karacaylr 《International Journal of Biomathematics》 SCIE 2018年第2期283-298,共16页
In this paper, we present a numerical scheme to obtain polynomial approximations for the solutions of continuous time-delayed population models for two interacting species. The method includes taking inner product of ... In this paper, we present a numerical scheme to obtain polynomial approximations for the solutions of continuous time-delayed population models for two interacting species. The method includes taking inner product of a set of monomials with a vector obtained from the problem under consideration. Doing this, the problem is transformed to a non- linear system of algebraic equations. This system is then solved, yielding coefficients of the approximate polynomial solutions. In addition, the technique of residual correction, which aims to increase the accuracy of the approximate solution by estimating its error, is discussed in some detail. The method and the residual correction technique are illustrated with two examples. 展开更多
关键词 Continuous population models delay differential equations Lotka Volterraequation inner product residual error correction.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部