This paper proposed a novel fast fractional pixel search algorithm based on polynomial model. With the analysis of distribution characteristics of motion compensation error surface inside tractional pixel searching wi...This paper proposed a novel fast fractional pixel search algorithm based on polynomial model. With the analysis of distribution characteristics of motion compensation error surface inside tractional pixel searching window, the matching error is fitted with parabola along horizontal and vertical direction respectively. The proposcd searching strategy needs to check only 6 points rather than 16 or 24 points, which are used in the l lierarchical Fractional Pel Search algorithm (HFPS) for 1/4-pel and 1/8-pel Motion Estimation (ME). The experimental results show that the proposed algorithm shows very good capability in keeping the rate distortion performance while reduces computation load to a large extent compared with HFPS algorithm.展开更多
Hyperentanglement is a promising resource in quantum information processing with its high capacity character, defined as the entanglement in multiple degrees of freedom(DOFs) of a quantum system, such as polarization,...Hyperentanglement is a promising resource in quantum information processing with its high capacity character, defined as the entanglement in multiple degrees of freedom(DOFs) of a quantum system, such as polarization, spatial-mode, orbit-angular-momentum, time-bin and frequency DOFs of photons.Recently, hyperentanglement attracts much attention as all the multiple DOFs can be used to carry information in quantum information processing fully. In this review, we present an overview of the progress achieved so far in the field of hyperentanglement in photon systems and some of its important applications in quantum information processing, including hyperentanglement generation, complete hyperentangled-Bell-state analysis, hyperentanglement concentration, and hyperentanglement purification for high-capacity long-distance quantum communication. Also, a scheme for hyper-controlled-not gate is introduced for hyperparallel photonic quantum computation, which can perform two controlled-not gate operations on both the polarization and spatial-mode DOFs and depress the resources consumed and the photonic dissipation.展开更多
基金Supported by the Doctoral Foundation of Ministry of Education of China (No.20040699015).
文摘This paper proposed a novel fast fractional pixel search algorithm based on polynomial model. With the analysis of distribution characteristics of motion compensation error surface inside tractional pixel searching window, the matching error is fitted with parabola along horizontal and vertical direction respectively. The proposcd searching strategy needs to check only 6 points rather than 16 or 24 points, which are used in the l lierarchical Fractional Pel Search algorithm (HFPS) for 1/4-pel and 1/8-pel Motion Estimation (ME). The experimental results show that the proposed algorithm shows very good capability in keeping the rate distortion performance while reduces computation load to a large extent compared with HFPS algorithm.
基金supported by the National Natural Science Foundation of China (11474026, 11574038, 11547106, 11604226, and 11674033)
文摘Hyperentanglement is a promising resource in quantum information processing with its high capacity character, defined as the entanglement in multiple degrees of freedom(DOFs) of a quantum system, such as polarization, spatial-mode, orbit-angular-momentum, time-bin and frequency DOFs of photons.Recently, hyperentanglement attracts much attention as all the multiple DOFs can be used to carry information in quantum information processing fully. In this review, we present an overview of the progress achieved so far in the field of hyperentanglement in photon systems and some of its important applications in quantum information processing, including hyperentanglement generation, complete hyperentangled-Bell-state analysis, hyperentanglement concentration, and hyperentanglement purification for high-capacity long-distance quantum communication. Also, a scheme for hyper-controlled-not gate is introduced for hyperparallel photonic quantum computation, which can perform two controlled-not gate operations on both the polarization and spatial-mode DOFs and depress the resources consumed and the photonic dissipation.