To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed c...To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.展开更多
As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was ap...As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.展开更多
In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be complet...In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.展开更多
Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes. By analyzing and comparing three commonly used braking velocity curves, we conclude that the Harrison...Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes. By analyzing and comparing three commonly used braking velocity curves, we conclude that the Harrison curve is the best. Given the characteristics of a downward belt conveyor, we studied the control in a closed-loop velocity, a conventional PID method and an optimal PID control method. We used MATLAB/Simulink to simulate the three control methods. Our simulation results show that opti- mal PID control is especially suitable for disc braking systems. To verif!/the results from theoretical anal- ysis and simulation, a multifunctional test-bed was developed to simulate the braking process of a disc brake system. Our experimental results demonstrate that the optimal PID control can make the output velocity to follow a preset velocity correctly with only small fluctuations, meeting the requirements of a flexible brake for a belt conveyor.展开更多
In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided...In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided by steel rope, increasing force by the movable pulley group, modular, convenient and flexible. Dynamics model for controller is deduced based on the constitutive equation of viscoelasticity. Controller is designed for position control and is based on the viscoelasticity dynamics model compensation control strategy proposed. The control system is based on the TURBO PMAC multi-axis motion control card.Prototype loading experiments and velocity experiments results show that the FDU can reach 2 Hz with no load and the max speed of 30(°)/s. The FDU has the capability of the load torque 11.2 N·m and the speed of 24(°)/s simultaneously, and the frequency response is 1.3 Hz. The FDU can be used to be the pitch joint of hip for biped robot whose walking speed is 0.144 km/h theoretically.展开更多
In this paper we analyze the influence of free convection on nonlinear peristaltic transport of a Jeffrey fluid in a finite vertical porous stratum using the Brinkman model. Heat is generated within the fluid by both ...In this paper we analyze the influence of free convection on nonlinear peristaltic transport of a Jeffrey fluid in a finite vertical porous stratum using the Brinkman model. Heat is generated within the fluid by both viscous and Darcy dissipations. The coupled nonlinear governing equations are solved analytically. The expressions for the temperature, the axial velocity, the local wall shear stress and the pressure gradient are obtained. The effects of various physical parameters such as the Jeffrey parameter λ1, the permeability parameter σ and the heat source/sink parameter β are analyzed through graphs, and the results are discussed in detail. It is observed that the velocity field increases with increasing values of the Jeffrey parameter but it decreases with increasing values of the permeability parameter. It is found that the pressure rise increases with decreasing Jeffrey parameter and increasing permeability parameter. We notice that the effect of the permeability parameter a is the strongest on the bolus trapping phenomenon. For λ1 = 0, N =0, the results of the present study reduce to the results of Tripathi [Math. Comput.Modelling 57 (2013) 1270-1283]. Further the effect of viscous and Darcy dissipations is to reduce the rate of heat transfer in the finite vertical porous channel under peristalsis.展开更多
基金the Hi-Tech Research and Development Pro-gram (863) of China (No. 2006AA04Z233)the National NaturalScience Foundation of China (No. 50575205)the Natural ScienceFoundation of Zhejiang Province (Nos. Y104243 and Y105686),China
文摘To satisfy the need of high speed NC (numerical control) machining, an acceleration and deceleration (acc/dec) control model is proposed, and the speed curve is also constructed by the cubic polynomial. The proposed control model provides continuity of acceleration, which avoids the intense vibration in high speed NC machining. Based on the discrete characteristic of the data sampling interpolation, the acc/dec control discrete mathematical model is also set up and the discrete expression of the theoretical deceleration length is obtained furthermore. Aiming at the question of hardly predetermining the deceleration point in acc/dec control before interpolation, the adaptive acc/dec control algorithm is deduced from the expressions of the theoretical deceleration length. The experimental result proves that the acc/dec control model has the characteristic of easy implementation, stable movement and low impact. The model has been applied in multi-axes high speed micro fabrication machining successfully.
基金Project(51105372) supported by the National Natural Science Foundation of ChinaProject(JC12-03-01) supported by the Research Plan of National University of Defense Technology,China
文摘As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.
基金Supported by the National Science Foundation of China under Grant Nos.10702023,10832006,and 60704041the Research Fund for the Doctoral Program of Higher Education under Grant No.20070487090
文摘In this paper,we investigate a leader-following tracking problem for multi-agent systems with boundedinputs.We propose a distributed bounded protocol for each follower to track a leader whose states may not be completelymeasured.We theoretically prove that each agent can follow the leader with estimable track errors.Finally,somenumerical simulations are presented to illustrate our theoretical results.
文摘Reliability of braking systems is a key requirement to ensure the safety of in using downward belt conveyor brakes. By analyzing and comparing three commonly used braking velocity curves, we conclude that the Harrison curve is the best. Given the characteristics of a downward belt conveyor, we studied the control in a closed-loop velocity, a conventional PID method and an optimal PID control method. We used MATLAB/Simulink to simulate the three control methods. Our simulation results show that opti- mal PID control is especially suitable for disc braking systems. To verif!/the results from theoretical anal- ysis and simulation, a multifunctional test-bed was developed to simulate the braking process of a disc brake system. Our experimental results demonstrate that the optimal PID control can make the output velocity to follow a preset velocity correctly with only small fluctuations, meeting the requirements of a flexible brake for a belt conveyor.
基金Project(2006AA04Z201,2012AA041601)supported by the National High-Tech Research and Development Program of China
文摘In order to ensure that the system has the advantage of light weight and vibration absorption, the steel rope is used as a flexible transmission part. A flexible drive unit(FDU) is developed, whose features are guided by steel rope, increasing force by the movable pulley group, modular, convenient and flexible. Dynamics model for controller is deduced based on the constitutive equation of viscoelasticity. Controller is designed for position control and is based on the viscoelasticity dynamics model compensation control strategy proposed. The control system is based on the TURBO PMAC multi-axis motion control card.Prototype loading experiments and velocity experiments results show that the FDU can reach 2 Hz with no load and the max speed of 30(°)/s. The FDU has the capability of the load torque 11.2 N·m and the speed of 24(°)/s simultaneously, and the frequency response is 1.3 Hz. The FDU can be used to be the pitch joint of hip for biped robot whose walking speed is 0.144 km/h theoretically.
文摘In this paper we analyze the influence of free convection on nonlinear peristaltic transport of a Jeffrey fluid in a finite vertical porous stratum using the Brinkman model. Heat is generated within the fluid by both viscous and Darcy dissipations. The coupled nonlinear governing equations are solved analytically. The expressions for the temperature, the axial velocity, the local wall shear stress and the pressure gradient are obtained. The effects of various physical parameters such as the Jeffrey parameter λ1, the permeability parameter σ and the heat source/sink parameter β are analyzed through graphs, and the results are discussed in detail. It is observed that the velocity field increases with increasing values of the Jeffrey parameter but it decreases with increasing values of the permeability parameter. It is found that the pressure rise increases with decreasing Jeffrey parameter and increasing permeability parameter. We notice that the effect of the permeability parameter a is the strongest on the bolus trapping phenomenon. For λ1 = 0, N =0, the results of the present study reduce to the results of Tripathi [Math. Comput.Modelling 57 (2013) 1270-1283]. Further the effect of viscous and Darcy dissipations is to reduce the rate of heat transfer in the finite vertical porous channel under peristalsis.