To make audio watermarking accomplish both copyright protection and content authentication with localization, a novel multipurpose audio watermarking scheme is proposed in this paper. The zero-watermarking idea is int...To make audio watermarking accomplish both copyright protection and content authentication with localization, a novel multipurpose audio watermarking scheme is proposed in this paper. The zero-watermarking idea is introduced into the design of robust watermarking algorithm to ensure the transparency and to avoid the interference between the robust watermark and the semi-fragile watermark. The property of natural audio that the VQ indices of DWT-DCT coefficients among neighboring frames tend to be very similar is utilized to extract essential feature from the host audio, which is then used for watermark ex-traction. And, the chaotic mapping based semi-fragile watermark is embedded in the detail wavelet coefficients based on the instantaneous mixing model of the independent component analysis (ICA) system. Both the robust and semi-fragile watermarks can be extracted blindly and the semi-fragile watermarking algorithm can localize the tampering accurately. Simulation results demonstrate the effectiveness of our algorithm in terms of transparency, security, robustness and tampering localization ability.展开更多
The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and t...The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.展开更多
Recently, single carrier block transmission(SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication.However,minimum-mean-square-error(MMSE) linear FDE may suffer performance los...Recently, single carrier block transmission(SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication.However,minimum-mean-square-error(MMSE) linear FDE may suffer performance loss in the severely time dispersive underwater acoustic channel. To combat the channel distortion, a novel multi-channel receiver with maximum ratio combining and a low complex T/4 fractional iterative frequency domain equalization(FDE) is investigated to improve diversity gain and the bit error rate(BER) performance. The proposed method has been verified by the real data from a lake underwater acoustic communication test in November 2011. At 1.8 km, the useful data rates are around 1500 and 3000 bits/s for BPSK and QPSK respectively. The results show the improvements of system performance. Compared with MMSE FDE system, the output SNR improvement is 6.9 d B, and the BER is from 10-3 to no error bits for BPSK. The output SNR improvement is 5.3 d B, and the BER is from 1.91×10-2 to 2.2×10-4for QPSK.展开更多
The complexity of underwater environment poses a challenge to underwater acoustic communication.In marine environment,different temperatures,depths and salinities would affect the performance of acoustic communication...The complexity of underwater environment poses a challenge to underwater acoustic communication.In marine environment,different temperatures,depths and salinities would affect the performance of acoustic communication.The analysis of the underwater acoustic channel under the influence of temperature factors provides a reference for further study of the underwater acoustic channel estimation problem based on filter bank multi-carrier(FBMC).The FBMC based offset quadrature amplitude modulation(OQAM)technology(FBMC/OQAM)was introduced into the underwater acoustic communication.Based on FBMC,the underwater acoustic channel estimation technology was studied.By changing the pilot structure to adapt to the complex and variable underwater acoustic channel,the iterative method was used to obtain the channel information with higher accuracy and further improve the performance of channel estimation.Theoretical analysis and simulation results show that iterative channel estimation algorithm based on the new interference approximation method(IAM)pilot proposed in this paper has better performance in underwater acoustic channel.展开更多
文摘To make audio watermarking accomplish both copyright protection and content authentication with localization, a novel multipurpose audio watermarking scheme is proposed in this paper. The zero-watermarking idea is introduced into the design of robust watermarking algorithm to ensure the transparency and to avoid the interference between the robust watermark and the semi-fragile watermark. The property of natural audio that the VQ indices of DWT-DCT coefficients among neighboring frames tend to be very similar is utilized to extract essential feature from the host audio, which is then used for watermark ex-traction. And, the chaotic mapping based semi-fragile watermark is embedded in the detail wavelet coefficients based on the instantaneous mixing model of the independent component analysis (ICA) system. Both the robust and semi-fragile watermarks can be extracted blindly and the semi-fragile watermarking algorithm can localize the tampering accurately. Simulation results demonstrate the effectiveness of our algorithm in terms of transparency, security, robustness and tampering localization ability.
基金Supported by the National High Technology Research and Development Program of China (2009AA093601-2)the National Defense Foundation Research (B2420110007)
文摘The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.
基金supported in part by National Natural Science Foundation of China under Grants No.61471298 and 61101102Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2015JM6297)
文摘Recently, single carrier block transmission(SCBT) has received much attention in high-rate phase-coherent underwater acoustic communication.However,minimum-mean-square-error(MMSE) linear FDE may suffer performance loss in the severely time dispersive underwater acoustic channel. To combat the channel distortion, a novel multi-channel receiver with maximum ratio combining and a low complex T/4 fractional iterative frequency domain equalization(FDE) is investigated to improve diversity gain and the bit error rate(BER) performance. The proposed method has been verified by the real data from a lake underwater acoustic communication test in November 2011. At 1.8 km, the useful data rates are around 1500 and 3000 bits/s for BPSK and QPSK respectively. The results show the improvements of system performance. Compared with MMSE FDE system, the output SNR improvement is 6.9 d B, and the BER is from 10-3 to no error bits for BPSK. The output SNR improvement is 5.3 d B, and the BER is from 1.91×10-2 to 2.2×10-4for QPSK.
基金Focus on Research and Development Plan in Shandong Province(Special Public Welfare Project)(No.2018GHY115022)National Natural Science Foundation of China(No.61471224)。
文摘The complexity of underwater environment poses a challenge to underwater acoustic communication.In marine environment,different temperatures,depths and salinities would affect the performance of acoustic communication.The analysis of the underwater acoustic channel under the influence of temperature factors provides a reference for further study of the underwater acoustic channel estimation problem based on filter bank multi-carrier(FBMC).The FBMC based offset quadrature amplitude modulation(OQAM)technology(FBMC/OQAM)was introduced into the underwater acoustic communication.Based on FBMC,the underwater acoustic channel estimation technology was studied.By changing the pilot structure to adapt to the complex and variable underwater acoustic channel,the iterative method was used to obtain the channel information with higher accuracy and further improve the performance of channel estimation.Theoretical analysis and simulation results show that iterative channel estimation algorithm based on the new interference approximation method(IAM)pilot proposed in this paper has better performance in underwater acoustic channel.