针对信噪比较低时,多重信号分类(Multiple Signal Classification,MUSIC)算法方位谱背景级较高的问题,提出了一种解卷积的MUSIC方位估计算法(Deconvolvecd MUSIC,D-MUSIC)。该方法用一个类似冲激函数作为MUSIC算法输出方位谱的点散...针对信噪比较低时,多重信号分类(Multiple Signal Classification,MUSIC)算法方位谱背景级较高的问题,提出了一种解卷积的MUSIC方位估计算法(Deconvolvecd MUSIC,D-MUSIC)。该方法用一个类似冲激函数作为MUSIC算法输出方位谱的点散射函数(Point Scattering Function,PSF),然后基于解卷积图像复原理论,利用该点散射函数和RichardsonLucy(R-L)迭代算法对MUSIC算法的方位谱进行解卷积,获得D-MUSIC算法的方位谱,达到降低方位谱背景级的目的。仿真表明,该方法继承了MUSIC算法的高分辨性能,且可以明显降低方位谱的背景级,具有较好的方位估计性能。对南海海上试验的水平阵数据进行处理,分析比较了利用MUSIC算法和解卷积MUSIC算法获得的方位谱时间历程图,分析结果有效验证了D-MUSIC算法性能的优越性。展开更多
矢量水听器能同时拾取声压和振速信息,在相同的信噪比、阵元数及阵列孔径下,矢量阵定向性能优于声压阵列。目前,以多重信号分类算法(Multiple signal classification,MUSIC)为代表的高分辨定向算法已经广泛应用于矢量水听器阵列中。但...矢量水听器能同时拾取声压和振速信息,在相同的信噪比、阵元数及阵列孔径下,矢量阵定向性能优于声压阵列。目前,以多重信号分类算法(Multiple signal classification,MUSIC)为代表的高分辨定向算法已经广泛应用于矢量水听器阵列中。但是随着信噪比降低、信号源方位间隔减小,传统MUSIC算法定向精度及分辨概率显著下降。本文采用最小二乘法设计适用于矢量水听器水平阵列的矩阵空域滤波器,用于阵列数据的空间滤波预处理,可以对阻带扇面噪声进行有效抑制。由滤波后的数据协方差矩阵可以得到新的噪声子空间,在传统MUSIC算法基础上修正通带扇面内阵列流型的畸变后即可得到滤波后MUSIC算法的方位谱。仿真结果表明,当信噪比较低时,改进算法有效提高了通带扇面内目标方位分辨性能。最后本文对四基元矢量水平阵列海试数据进行了处理,改进算法对窄带信号定向较常规算法-3 dB束宽减小了13°,旁瓣级降低约8 dB。对有一定带宽的行船辐射噪声定向处理得到了更加精确的航迹图,海试数据处理结果证明了该算法的可行性和有效性。展开更多
针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在...针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。展开更多
文摘矢量水听器能同时拾取声压和振速信息,在相同的信噪比、阵元数及阵列孔径下,矢量阵定向性能优于声压阵列。目前,以多重信号分类算法(Multiple signal classification,MUSIC)为代表的高分辨定向算法已经广泛应用于矢量水听器阵列中。但是随着信噪比降低、信号源方位间隔减小,传统MUSIC算法定向精度及分辨概率显著下降。本文采用最小二乘法设计适用于矢量水听器水平阵列的矩阵空域滤波器,用于阵列数据的空间滤波预处理,可以对阻带扇面噪声进行有效抑制。由滤波后的数据协方差矩阵可以得到新的噪声子空间,在传统MUSIC算法基础上修正通带扇面内阵列流型的畸变后即可得到滤波后MUSIC算法的方位谱。仿真结果表明,当信噪比较低时,改进算法有效提高了通带扇面内目标方位分辨性能。最后本文对四基元矢量水平阵列海试数据进行了处理,改进算法对窄带信号定向较常规算法-3 dB束宽减小了13°,旁瓣级降低约8 dB。对有一定带宽的行船辐射噪声定向处理得到了更加精确的航迹图,海试数据处理结果证明了该算法的可行性和有效性。
文摘针对传统的多重信号分类(multiple signal classification,简称MUSIC)算法定位声源位置时存在计算量大的问题,提出了一种基于宏微导向的蚁群(ant colony optimization,简称ACO)-MUSIC两级相控声源定位算法。首先,利用ACO估算出声源所在的宏观位置,再用MUSIC算法精确搜索声源所在的微观方位;其次,对提出的算法进行数值仿真,并搭建实验系统进行验证。仿真和实验结果表明,所提出的算法可以高精度、快速地定位出声源所在的位置;在搜索步距为0.05°时,算法的计算复杂度和计算时间仅为传统MUSIC算法的0.25%和2.8%。