期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合Landsat 8与PALSAR-2影像的龙南县针叶林蓄积量遥感估测研究 被引量:3
1
作者 罗凯健 许晓东 +3 位作者 龙江平 徐聪荣 林辉 和晓风 《林业资源管理》 北大核心 2021年第1期69-76,共8页
林分蓄积量估测是林业遥感的重要研究领域,由于云雾天气和光谱饱和现象等因素限制了光学遥感影像估测林分蓄积量的精度。合成孔径雷达(SAR)具有穿透性强、受云雾影响小等特点,弥补了光学遥感的不足。以江西省龙南县的针叶林为研究对象,... 林分蓄积量估测是林业遥感的重要研究领域,由于云雾天气和光谱饱和现象等因素限制了光学遥感影像估测林分蓄积量的精度。合成孔径雷达(SAR)具有穿透性强、受云雾影响小等特点,弥补了光学遥感的不足。以江西省龙南县的针叶林为研究对象,结合Landsat 8与PALSAR-2双极化SAR影像数据,在遥感数据预处理基础上,提取了光谱信息、植被指数、纹理信息和后向散射系数等共245个遥感因子。基于Pearson相关系数法和多元逐步回归法,筛选出65个遥感因子参与林分蓄积量估测。以林分郁闭度作为分层因子,分别采用线性、KNN、支持向量机(SVM)、多重感知机(MLP)和随机森林(RF)5种模型估测林分蓄积量,并对估测结果进行精度检验。实验结果表明:1)相比单独使用Landsat 8的光谱和纹理信息,基于郁闭度分级并融合PALSAR-2的后向散射信息明显提高了蓄积量的反演精度;2)对于低郁闭度林分,线性模型精度最高(rRMSE=21.16%),中郁闭度林分,多重感知机模型估测效果最好(rRMSE=30.61%),高郁闭度林分,多重感知机模型估测效果最好(rRMSE=27.53%)。在结合PALSAR-2的后向散射系数的基础上,郁闭度分层能有效改善中高蓄积量区域的反演精度。 展开更多
关键词 郁闭度分级 PALSAR-2 林分蓄积量 多重感知机模型 针叶林
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部