Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was...Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.展开更多
基金Projects(5117530651575320)supported by the National Natural Science Foundation of China+1 种基金Project(TS20130922)supported by the Taishan Scholar Foundation,ChinaProject(2014JC020)supported by the Fundamental Research Funds for the Central Universities of China
文摘Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.