An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the...An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the nu-merical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe2O4 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 10872179 and 10725210)the Zhejiang Provincial Natural Science Foundation of China (No. Y7080298)the Zijin Plan of Zhejiang University, China
文摘An analytical solution is obtained for a rotating multiferroic composite hollow cylinder made of radially polarized piezoelectric and piezomagnetic materials. Both the number of layers and the stacking sequence of the composite cylinder can be arbitrary. General mechanical, electric and magnetic boundary conditions can be applied at both the inner and outer cylindrical surfaces. The state space method is employed so that only a 2×2 matrix is involved in the whole solving procedure. In the nu-merical experiments, the distributions of elastic, electric as well as magnetic fields in an internally pressurized rotating BaTiO3/CoFe2O4 composite hollow cylinder subjected to different boundary conditions are presented graphically. The results clearly show that the stress fields in a multiferroic composite cylinder are controllable.