期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于支持向量机集成的蛋白质与维生素绑定位点预测
1
作者
朱非易
《现代电子技术》
北大核心
2015年第9期90-95,共6页
在蛋白质与维生素绑定位点预测问题中,小类样本和大类样本之间存在显著的不平衡性,传统的机器学习方法将不再适用。针对此问题,在多重随机下采样的基础上结合支持向量机(SVM)集成来预测蛋白质与维生素的绑定位点,采用了一种改进的Ada Bo...
在蛋白质与维生素绑定位点预测问题中,小类样本和大类样本之间存在显著的不平衡性,传统的机器学习方法将不再适用。针对此问题,在多重随机下采样的基础上结合支持向量机(SVM)集成来预测蛋白质与维生素的绑定位点,采用了一种改进的Ada Boost集成方法,称为MAda Boost集成。通过实验比较了不同的集成策略,其中MAda Boost集成效果最优。实验结果表明,采用随机下采样结合SVM集成将有效提高蛋白质维生素绑定位点预测的精度。
展开更多
关键词
蛋白质-维生素相互作用
绑定位点预测
多重随机下采样
SVM集成
ADABOOST算法
下载PDF
职称材料
题名
基于支持向量机集成的蛋白质与维生素绑定位点预测
1
作者
朱非易
机构
南京理工大学计算机科学与工程学院
出处
《现代电子技术》
北大核心
2015年第9期90-95,共6页
基金
江苏省自然科学基金-面上项目:面向蛋白质生物计算的特征抽取及动态学习模型研究(BK20141403)
文摘
在蛋白质与维生素绑定位点预测问题中,小类样本和大类样本之间存在显著的不平衡性,传统的机器学习方法将不再适用。针对此问题,在多重随机下采样的基础上结合支持向量机(SVM)集成来预测蛋白质与维生素的绑定位点,采用了一种改进的Ada Boost集成方法,称为MAda Boost集成。通过实验比较了不同的集成策略,其中MAda Boost集成效果最优。实验结果表明,采用随机下采样结合SVM集成将有效提高蛋白质维生素绑定位点预测的精度。
关键词
蛋白质-维生素相互作用
绑定位点预测
多重随机下采样
SVM集成
ADABOOST算法
Keywords
protein-vitamin interaction
binding site prediction
multiple random sampling
SVM ensemble
AdaBoost al-gorithm
分类号
TN911-34 [电子电信—通信与信息系统]
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于支持向量机集成的蛋白质与维生素绑定位点预测
朱非易
《现代电子技术》
北大核心
2015
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部